A Strategy For Education Estates: Sustainability And Climate Change:

As the government pushes for rapid adoption of net zero, the brunt of early development will inevitably fall to the government-funded public sector, in the latest policy paper, the government has outlined a strategy for education estates to address climate change and sustainability.

The government has set a vision for the United Kingdom to be the world-leading education sector in sustainability and climate change by 2030. To achieve this will require education to play a positive role in responding to climate change and inspiring action by supporting the delivery of the government’s 25 Year Environment Plan and Net Zero Strategy.

The strategy applies to the Department for Education (DfE), its agencies and public bodies, as well as early years schools (and independent schools where applicable), further education, higher education and children’s social care. The strategy commits to encouraging children to be close to nature both in and out of school, whilst legislating to meet net zero by 2050 placing a restriction, through legally binding carbon budgets, on the total amount of greenhouse gases the UK can emit over a 5-year period. In the latest, Carbon Budget 6, the UK legislated to reduce emissions by 78% by 2035 compared to 1990 levels.

Strategy For Education Estates: Aims

The government’s vision for the education sector is based on delivering four strategic aims:

  • Excellence in education and skills: through learning and practical experience prepare skill base for delivering a more sustainable future
  • Net zero: by reducing direct and indirect emissions from education buildings and providing opportunities for students to engage practically in the transition to net zero
  • Resilience: adapting education buildings and systems to be resiliently prepared for the effects of climate change
  • A better future environment: enhancing biodiversity, improving air quality and increasing access to nature in and around education settings

Whilst the government has set out a broad holistic approach to addressing sustainability and climate change across the education sector, a considerable portion, through net zero and the need for resilience, directly addresses the buildings within the education estate.

Strategy For Education Estates: Where To Begin?

To reduce energy usage and achieve legal targets for carbon emissions the education sector needs to get a better understanding of the scale of the problem. Schools and universities represent 36% of total UK public sector building emissions with costs being both significant and on the rise. Financial benchmarking shows schools alone were spending around £630m per annum on energy in 2019, with costs rising subsequently.

Adapting existing buildings and designing new ones to respond to climate change and reduce emissions presents a significant challenge. By standardising reporting for decarbonisation and climate resilience the government aims to develop evidence-based actions to support a reduction in energy demand and help adapt buildings to climate risks through innovation in construction that also deliver capital and operational savings. With increased legislation on net zero, consistent reporting will become a necessity. The government’s Net Zero Strategy commits to legislate reporting of emissions if insufficient progress is made voluntarily. It has committed to working with BEIS in the development of guidance on monitoring and reporting for the education sector

This reporting is set to include published risk assessments of overheating of the education estate, to be reviewed on an annual basis from 2023, and on-site emissions from the education estate, baselined by 2024, and progress against national targets published from 2025 onwards. The reports should directly address the requirements of net zero, climate adaptation and decarbonisation activity within education buildings.

This activity is also seen as a way to enhance and contextualise valuable learning opportunities. Through participation, pupils should gain insight into the implementation of climate adaptation measures, learn how buildings can be designed for net zero, and better understand the impacts of energy and water use.

The government’s focus for education estates through until 2025 will involve evidence gathering and reporting on the various new technologies, innovation in sustainable building design, retrofit, and building management to supply further guidance alongside that already to help public sector organisations achieve net zero. Once a best value for money approach is decided upon the process of investment will accelerate.

Strategy For Education Estates: Existing Buildings

The building energy efficiency survey indicates that approximately 60% of energy use in education settings is associated with high carbon intensity fuels such as natural gas, coal and oil. Reducing demand for heating and hot water use, and/or delivering via more sustainable means is a critical need.

For existing buildings, the strategy begins with further trials of smart meters and energy management systems that can help reduce usage and operational costs. Improved collation and use of data on energy usage, water and heat will help to drive individual settings for education buildings. Current delivery of Energy Management Systems in schools which will provide real-time information about energy usage, enabling evidence-based decisions and wider advisory of setting to improve energy efficiency. This is designed to enable Climate Action Plans to be put into place to inform government on the implementation of decarbonisation strategies.

One approach is to address sustainable heating and hot water by providing off-site manufactured, low-carbon, heating systems on the existing school and college estate. These ‘Energy Pods’, similar to Adveco developed packaged plant rooms, are viewed as a potentially strategic approach to safely deliver sustainability for the education estate.

This year the government has also committed to testing the feasibility of replacing school boilers with ground or air source heat pump applications that can be upscaled to accelerate decarbonisation between 2025 and 2035 as part of a wider effort to replace fossil fuel heating systems with low carbon heating.

To support the future retrofit of the education estate and act as catalyst to the construction sector for implementing new technology the government intends to generate building technology pilots. These projects will provide evidence for mitigating the causes of climate change, investigating the resilience of existing buildings and how their environmental conditions can be improved.

Working with BEIS this year, education will be helped with accessing the Public Sector Decarbonisation Scheme, with better-aligned application processes and funding windows. By 2023, all bids for capital funding for further education and higher education will need to consider environmental impact, carbon reduction and adaptation measures, and align with the government’s targets and objectives.

Strategy For Education Estates: New Builds

All new school buildings delivered by DfE which are not already contracted will be net zero in operation.

They will be designed for a 2°C rise in average global temperatures and future-proofed for higher indoor temperatures should there be a 4°C rise. The delivery framework for centrally delivered low-carbon, climate-resilient projects was published late last year and local authorities will need to consider environmental sustainability, carbon reduction and energy efficiency when planning with basic need grant-funding rates in place to deliver these new school capital projects. From now on bids into the Further Education Capital Transformation Programme will also be assessed to determine if the new works will be net zero in operation.

The implementation of ultra-low carbon education buildings will be accelerated. By 2025 at least four schools and one college will have been built via the Gen Zero Platform that was demonstrated at COP26. Over time, all centrally delivered new-build projects are to be built using ultra-low carbon methods.

To help understand how elements of this strategy can be quickly and cost-effectively implemented visit Adveco’s education resources for schools, academies, colleges and universities or contact us to discuss options for a site assessments to give you the accurate data you need to make a more educated decision on evolving hot water systems to be more sustainable.

Rooftop Solar – now is the time to act

Rooftop Solar – now is the time to act

Rooftop solar has hit the headlines with the publishing of the REPowerEU strategy by the European Commission.  Incorporating three main elements – energy savings, diversification of energy supplies and accelerated roll-out of renewable energy, the Commission is proposing an increase in its target for renewables to produce 45% of the EU’s energy by 2030, up from 40%.

As part of the renewable energy roll-out, the strategy has outlined a major initiative for the installation of rooftop solar panels. Initial details suggested the strategy would push countries to use EU funding and launch support programmes for rooftop solar panels and install solar energy in all suitable public buildings by 2025. EU and national governments were also to take action this year to limit permitting times to within three months for a more rapid rollout of rooftop installations.

As in the UK, solar turnaround had yet to be formally addressed by the EU, even though it is a proven technology.

Countries including Spain, Austria and Lithuania had been petitioning Brussels to tackle the issue with legal tools, such as requiring new buildings to have solar rooftops on flat roofs, public buildings and supermarkets across Europe, rather than relying on current voluntary schemes.

With the publication of the proposed strategy, the EU has opted to go much further in its support of solar, requiring all new buildings be fitted with rooftop solar panels. The ‘solar rooftop initiative’ would bring in a legal obligation to install solar panels on public and commercial buildings, as well as residential properties, constructed within European Union territory.

The mandatory solar panel proposal encompasses both solar PV for the production of electricity and solar thermal for water heating as part of the Union’s desire to quickly phase out dependency on Russian gas, oil and coal imports. This process would require doubling the bloc’s capacity for capturing solar power, as well as deploying twice as many heat pumps. Meanwhile, the Commission has suggested upping its energy efficiency target through cutting consumption by 13 per cent by 2030. The process of mandating solar installation will, it is estimated, cost an extra 210 billion euros, with investment to come from a mixture of the public and private sectors.

The EU’s decision to commit its support to solar makes absolute sense, the technology is well understood, is genuinely renewable and has improved considerably in terms of efficiency making it a more compelling investment with a faster return of investment compared to 10-15 years ago. This is especially the case for solar thermal which rather than generating electricity, transfers energy to water heating systems. For commercial projects, especially refurbishment of existing properties that are on gas, it provides a realistic method for upgrading existing systems. Solar thermal alone will not generate the full hot water demand for a building, but combined with gas-fired or electric top-up heat it can help meet 100% demands, whilst reducing the need for gas. Though complex, solar thermal and heat pumps can also be combined in hybrid DHW systems to further efficiencies and reduce or entirely remove dependence on gas, making the technology a key building block for attaining net zero.

The UK government’s focus on heat pumps and district heat networks is laudable, but both require further development, especially to meet the demands of the commercial sector where much of the legacy building stock would be better served by rooftop solar thermal for sustainable water heating. The complete absence of government strategy, or support for solar technologies in the UK is at best baffling. The hope is that the European Commission’s strategy will influence decision makers in this country to reconsider the advantages of investing in solar as part of our drive towards net zero by 2050.

Learn more about the advantages of deploying solar thermal from Adveco for your building’s hot water.

Adveco FUSION Named 2022 Heat Pump Awards Finalist

Commercial hot water specialist Adveco has been named as a finalist in the 2022 National ACR & Heat Pump Awards for its FUSION FPH-S range of low carbon, all-electric, packaged hybrid hot water systems

“To be named as a finalist for the second year running is already quite the achievement for the company,” said David O’Sullivan, managing director, Adveco. “The heat pump market is seeing impressive technical leaps as the UK government calls for organisations to attain net zero by 2050. The commercial hot water market presents additional complexities when it comes to servicing application demands with heat pumps. The FUSION system was conceived, designed and built by Adveco to specifically address these challenges, delivering a hybrid water system that optimises efficiency to meet hot water demand, higher temperatures and lowers carbon emissions in line with the latest building regulations.”

FUSION harnesses Adveco’s FPi32 Air Source Heat Pumps (ASHP), a high-pressure A TSH calorifier with electric immersion, controls, and metering to provide a reliable, high-temperature, sustainable and cost-effective system for new commercial build and refurbishment projects.

The physical design, dedicated controls and integrated metering ensure the ASHP preheat, and immersion work seamlessly to deliver the highest operational efficiencies. This enables FUSION to make the greatest gains possible from the heat pump, even when ambient temperature and system demands fluctuate. These gains offset much of the direct electrical energy usually required, delivering 53% carbon emissions saving and helping control the operational costs of providing business-critical hot water.

FUSION is available in 16 pre-specified variants with 6 or 10 kW preheat and 9 or 12 kW electric top-up, with capacities ranging from 200 to 500 litres all rated at 10 BAR for high-pressure applications. Able to meet a range of continuous capacity hot water demands from 257-377 litres/hour makes FUSION highly adaptable for a wide range of commercial buildings.

The National ACR & Heat Pump Awards, hosted by ACR Journal and Heat Pumps Today, will be held in Leeds on June 9 2022.

 

Adveco Launches The GL Family Of Carbon Steel Tanks

Commercial hot water specialist Adveco launches the GL family of low-cost carbon steel storage tanks offer a selection of off-the-shelf vessels for commercial hot water (DHW) projects requiring direct electric heating, buffer storage, indirect heating or preheat.

  • A wide range of low-cost commercial carbon steel storage tanks and calorifiers
  • Direct electric, buffer storage, indirect heating & preheat for hot water applications
  • From 200 litre up to 5000 litre capacity for larger-scale all-electric projects

“Tough enough to deal with water conditions typically encountered across the UK, the new GL family expands options with a versatile choice of vessels with single and double coil variants, as well as no coil and the option for electric immersion to quickly and cost-effectively replace vessels in ageing commercial hot water systems,” said Bill Sinclair, technical director, Adveco.

Adveco GLE

Designed to serve as buffer vessel or electric water heater, the Adveco GLE is available in a range of sizes from 200 to 5000L to support larger all-electric systems. Compatible with a wide choice of direct electric immersion heater options available from Adveco, the GLE supports duty immersions from 3 to 36 kW, as well as secondary supplementary immersions from 3 to 6 kW for additional heating, or as backup to ensure continuity of service from a single unit.

Adveco GLC

Carbon steel calorifiers with a single fixed indirect heating coil at low level are designed to serve as indirect water heaters or preheat vessels. Available in 200 to 3000 litres capacities, GLC can also accept a 180mm 3-36kW electric immersion.

Adveco GLT

GLT carbon steel calorifiers are designed to serve as indirect water heaters. The tanks, also available in 200 to 3000 litres capacities incorporate two fixed indirect heating coils, one each at low and high level, designed for use with two separate heat sources.

To prevent corrosion the tanks are constructed from a carbon steel shell with a high-quality inorganic enamel lining. They are suitable for use in systems with maximum working pressure up to 10 bar and temperatures up to 85°C and include as standard a magnesium sacrificial anode (pre-fitted in 300-1000L variants), and a temperature gauge (pre-fitted in tanks up to 1000L).

The vessels are protected by a tough PVC jacket enclosing a rigid high-density polyurethane foam or removeable polyester fibre insulation, pre-fitted for tanks up to 1000L.

The Adveco GL range of storage tanks carries both WRAS and Kiwa’s KUKreg4 certification of product compliance with the water supply (water fittings) regulations for England, Scotland, and NI.

Supporting Ancillaries from Adveco

  • Electric Immersion Heaters from 3-36 kW (GLE / GLC & GLT 200-500L)
  • E0008/0-95C: Control Thermostat with 0-95°C range
  • E0011: Overheat thermostat
  • MB0001: Destratification pump kit
  • Unvented Kit

Adveco launches the GL family, learn more by visiting the GL product page.

Keeping Hot Water Flowing

Keeping hot water flowing is critical in the commercial sector, where domestic hot water (DHW) appliances will be subjected to extremely hostile conditions, with high temperatures, thermal stress and flue gas condensate on the combustion side and oxygen, minerals and chemical attacks leading to potential corrosion on the waterside. Given this harsh daily treatment, regular servicing and maintenance are key if business-critical service is to be observed. Ensuring consistent operations and prolonging the life of a commercial hot water and heating system should therefore be a key factor when specifying and costing out these business-critical systems.

Once an application is sized correctly and installed, that maintenance process begins with commissioning. This choice falls to the customer, but Adveco advises that it should be engaged to commission its own appliances. This ensures product warranty commences from the date of commissioning, rather than the date of delivery which may be months before a system eventually goes live. If not commissioned by Adveco, it will also fall to the customer to fault find, order the new part and return the faulty part, which can be a painful, time-consuming process for any facility manager who is already time-poor.

Keeping hot water flowing to support consistent operations, we specialise in both commissioning and proactive warranty service to the manufacturer’s recommendations. This is crucial for the consistent and efficient operation of an appliance which can be affected by a range of environmental factors, water condition most notably, but air quality can also harm operation. The UK is broadly split between hard and soft water conditions. In naturally soft water conditions, despite the use of sacrificial anodes, glass-lined vessels can rapidly succumb to critical corrosive damage, making stainless steel the optimal choice, with longevity countering higher purchase costs. Commercial glass-lined steel water heaters and tanks are usually the more cost-attractive proposition in the UK, especially in harder water areas, where, given the right conditions, they are generally resistant to attack from most chemicals and less-corrosive materials. However, the deposition of calcium carbonate, or scale, found in harder water remains a key issue, whether opting for glass-lined or stainless steel vessels.

The latest generation of water heaters may incorporate recirculation pumps to balance the flow of water through the appliance’s heat exchanger. That balance is critical as higher flows can reduce calcification, but it can also lead to corrosion where that flow is interrupted or broken. This is why internal forms should default to curves within the design to provide consistent, unbroken flows.

In typical operation in harder waters, in our experience, it is almost impossible to completely avoid the build-up of scale. Magnets simply do not work properly, so the use of an inhibitor fluid is critical alongside regular annual servicing. This can be of a representative number of appliances on a premise, with conditions that reduce or extend that service period. Low levels of scale may allow for units to be serviced in alternate years for example reducing costs. That annual service must however be thorough.

Too many times an ‘annual service’ will be a quick test with an analyser and issue of a landlord’s certificate. Such activity is relatively low cost, as it avoids the purchase of a service kit, but is ultimately a false economy. It will miss the early onset of calcification and means the water heater or boiler is more likely to suffer early, terminal blockage. For a thorough annual service, we would advocate appliances be fully drained, visually examined and any scale be removed. The process involves disassembly which requires the replacement of rubbers and gaskets, hence the requirement to purchase a service kit. Though more costly, such full services are substantially cheaper than the cost of replacing blocked heat exchangers, burners and even the entire appliance.

If scale build-up is not addressed, then within five years any descaler fluid introduced will simply wash over the surface, which will also easily resist the most concerted of hammer blows. At this stage, the descaler will also not pass through the heat exchanger, requiring its complete replacement. This is seen when servicing or preventative maintenance has been avoided or forgotten, at which point the manufacturer’s warranty will be void.

Annual monitoring of the inhibitor system used for boilers is also key, especially if heating facilities have been refurbished within a building. It is not uncommon to see boilers damaged after radiators are replaced, and new water introduced into the system without replacing lost inhibitor fluid. Monitoring and replacement as part of the annual service activity will again protect the heat exchangers.

The other key failure point is the burner in gas-fired appliances. Condensing boilers and water heaters will draw air from the plant room and if that is dusty, it will be sucked in, reducing the efficiency. If not cleaned regularly, the burner will soot up and eventually become blocked often requiring full replacement at some cost. Even if located in an open space, or exterior to the building the burner should be thoroughly inspected. Nearby building works can cause high levels of dust, and in dense urban areas, pollutants from vehicles can also be drawn into the appliance causing build-up of dirt on the burner.

Serviced thoroughly and regularly, commercial water heaters and boilers should have an efficient operational lifespan of at least ten years (depending on location), and we do see appliances still operating for twice that length of time. The caveat in these cases though is that the overall efficiency of legacy units operating for more than 10 years will be far lower than current generations of appliances and will almost certainly fail to meet current ERP regulations on emissions introduced in 2018 for new water heaters and boilers. So continued maintenance of such units would not only be a false economy in terms of running costs but will certainly not be contributing to any efforts to introduce better sustainability in a building.

In short, failure to descale, flush sediment, clean burners, check anodes or test for corrosion will reduce the operational longevity of any appliance, but also severely impact the efficient operation. That has negative implications on operational costs and unwarranted capital implications if there is a catastrophic failure. Under such conditions, this will almost certainly invalidate any manufacturer warranty that exists. Reactive service providers will only check gas pressures and overall condition, they will then wait for breakdowns and call outs.  Only by keeping hot water flowing through proactive servicing can you ensure any costly downtime of business-critical hot water is absolutely minimised.

Keeping hot water flowing. Visit our warranty service page or contact us to arrange for your service.