mould, virus and dust particles IAQ

IAQ in Commercial Buildings

Given that most of us typically spend up to 90% of our time inside buildings, indoor air quality (IAQ) is a serious consideration, especially as it relates to the health and comfort of the people who occupy it. Poor IAQ can have several negative health effects, including respiratory problems, headaches, fatigue, and allergies. It can also lead to decreased productivity and increased absenteeism.

Despite hybrid working becoming firmly entrenched across the country, IAQ remains an especially important issue within commercial buildings, given the significant time people still spend within them, whether working or visiting. IAQ can be affected by a variety of factors, including the building’s ventilation system, the materials used in its construction, and the activities that take place inside it.

The World Health Organisation (WHO) guidance on air quality has advised member states to consider air pollution to be as big a threat to human health and well-being as climate change and adjusted almost all of its previous maximum target levels for airborne pollutants downwards. It linked long-term exposure to even relatively low concentrations of ambient and indoor air pollution to lung cancer, heart disease, and strokes – putting the health impact of pollution on a par with poor diet and smoking.

There are several things that can contribute to poor IAQ in commercial buildings. Some of the most common causes include:

Many building materials, such as carpets, furniture, and paints, can release harmful pollutants into the air. These pollutants can include volatile organic compounds (VOCs), formaldehyde, and asbestos.

Pollutants from activities that take place inside a building can also contribute to poor IAQ. For example, cooking, smoking, and using cleaning products can all release pollutants into the air.

And if a building’s ventilation system is not working properly, it can’t remove pollutants from the air. This can lead to a buildup of pollutants and poor IAQ.

When the Covid-19 pandemic struck, highlighting the role played by poor-quality indoor environments in the spread of viruses and other airborne contaminants, new standards were deemed necessary, elevating publicly available specifications in development by the British Standards Institute and BESA to a full British Standard BS40102-1.

The new standard gives recommendations for measuring, monitoring, and reporting indoor environmental quality (IEQ) in all types of non-domestic buildings. It includes an evaluation and rating system for air quality, lighting, thermal comfort, and acoustics.

Given that building retrofit work carried out to improve energy efficiency had, in many cases, led to poorer quality ventilation this new evaluation will give building managers a benchmark score to help them identify areas of below-par performance. This enables planned improvements which include IEQ measures in any retrofit and renovation work to improve the health and well-being of occupants.

To meet the new standard organisations will need to tackle conditions that have a direct impact on human health including humidity, and excessive levels of CO2, CO, NO2, volatile organic compounds (VOC), airborne particulates and mould.

Adveco has for many years operated a system of checks to ensure the comfort and safety of buildings, including initial system commissioning to ensure correct and safe installation of appliances, in particular its gas-fired water heating and flues. This is especially important in controlling and safely removing any CO2 and NOx emissions from proximity to building users. Regular annual service is a critical facet of such safety checks, yet can be a process that slips once products are no longer under their initial warranty period. This is both a false economy and of potential danger to building users. While new builds will embrace all-electric systems which effectively negate NOx and on-premise CO2  generation, pre-existing commercial sites need to be increasingly vigilant, especially when ageing gas-fired systems remain in use. Mould, a type of fungus which produces airborne spores, is also a contributor to poor IAQ so regular service also helps to identify or prevent cases of damaging corrosion (in soft water areas) and limescale build-up (in harder water areas) which can lead to leaks that then encourage growth of mould in plantroom areas.

Setting IEQ performance benchmarks will make it easier for facilities managers to target problem areas, but British Standards will require further tightening if they are to keep abreast of the WHO’s more stringent guidelines. 

If you operate buildings with ageing gas-fired hot water systems and have concerns about IAQ or wish to reduce carbon emissions as part of a sustainability strategy, speak to Adveco about Live Metering, system assessment and replacement options. Whether looking for high-efficiency, ultra-low emission gas appliances such as AD / ADplus water heaters and MD boilers, or a transition to electric boilers, heat pumps or solar thermal we can help with system assessment, replacement design, supply and ongoing service for more efficient, comfortable and safe working environments.   

newsletter logo September 2023

Read The Adveco September 2023 Newsletter

Welcome to the Adveco September 2023 newsletter. This month we consider the opportunities solar thermal systems present for both gas-fired and electric water heating systems in commercial buildings. We consider the potential net zero impacts of the forthcoming Future Buildings Standards and the recently introduced EPC ratings on commercial rentals. And are pleased to announce our finalist status in both the Energy Awards and the Heating & Ventilation Review (HVR) Awards…  

Click here to read the Adveco September 2023 Newsletter

Adveco August Newsletter

Read The Adveco August 2023 Newsletter

Welcome to the Adveco August 2023 newsletter. This month we consider how blending technologies enables commercial properties to achieve greater sustainability of hot water supply. We also track the impact of the Public Sector Decarbonisation Fund as it ushers in phase 3c, new Buffer cylinders for heating projects and get an update on a project to counter limescale in restaurant applications. 

Click here to read the Adveco August 2023 Newsletter

FUSION sink or basin

Sink or Basin-led Projects Go Low Carbon

Sink or Basin Led Projects Go Low Carbon

FUSION sink or basin

For commercial organisations, there is a new pre-sized response to sink or basin-led hot water projects from Adveco.  The next-generation FUSION range from Adveco is a complete range of packaged electric and packaged renewable electric water heaters.

FUSION is a modern, future-proof system that embraces electric water heating and the option to incorporate air source heat pumps (ASHP) to lower carbon emissions in line with government calls for net zero. As an all-electric system, it uses familiar technology that is relatively simple and quick to install, cost-effective, reduces carbon emissions and removes dangerous NOₓ emissions for improved indoor air quality (IAQ) for enhanced occupant comfort. With an increased heating capacity over first-generation Adveco FUSION systems of up to 34 kW, the next generation of FUSION systems offers greater versatility for meeting domestic hot water (DHW) demands across a range of properties used for commercial operations. Projects with small to medium sink or and basin-led hot water demands, taller buildings with basement plant rooms and businesses that depend on 24/7 hot water provision for continuity of service all gain advantages from using FUSION.

The packaged format enables flexibility to specify from a range of cylinders, primary electrical heating, air source heat pumps for pre-heat, and immersions for back-up all supported by Adveco’s bespoke controls to ensure optimal, efficient operation. FUSION cylinders (ATSI & ATST) come with dedicated mounting points for the ARDENT electric boiler, simplifying and reducing the chance of installation errors.

By mounting the electric boiler directly to the cylinder FUSION is a more compact, space-saving option when specifying or having to refurbish an existing plant room. The cylinder connections and clean-out plate are all arranged on the front of the tank for easy access when connecting pre-built pipework with a choice of left- or right-hand side connection, and for regular maintenance. This arrangement also enables FUSION to be situated tightly into a corner, again maximising available space. Corrosion-resistant stainless steel construction makes FUSION’s cylinders perfect for either soft or hard water areas. With 10 Bar operating pressure, the ATSI and ATST are more than capable of serving the needs of taller buildings, especially those with existing basement plant rooms.

The use of the 9, 12 or 24 kW ARDENT electric boiler replaces the use of a single immersion for primary heating. Capital costs are not only equivalent, but ARDENT, with multiple immersions inside its sealed storage tank provides automatically balanced usage to prolong system life and immediate resilience for the boiler should there be a failure of one of its immersions. The typical cause of immersion failure in sink or basin-led systems is the creation of limescale in hard water areas, production of which is accelerated by the higher heat intensity of electrical water heating. This is avoided in FUSION, as the ARDENT is used in a sealed ‘primary’ loop to an indirect coil in the system’s cylinder.  The ARDENT electric boiler heats the same water continuously so there is only a small, finite amount of scale in the system which will not damage the elements, effectively eliminating damage to the immersions by limescale.

FUSION cylinders offer single (ATSI) and twin-coil (ATST) variants with capacities ranging from 200 to 500 litres. Single coil cylinders (ASTI) are used for standard electric indirect water heating with an ARDENT electric boiler (FUSION-E), and the option of an immersion for resistive heating ‘directly’ to water in the cylinder (FUSION-Eplus).

Dual-coil cylinders (ATST) enable the addition of a 6 or 10 kW FPi32 monobloc air to water heat pump. The ASHP is connected to the lower coil and supplies indirect pre-heat to the vessel, while ARDENT is connected to the upper coil to provide primary indirect heating (FUSION-T & -Tplus). FUSION E systems come with a thermostat and overheat thermostat as standard, but for renewable variants featuring dual-coil ATST cylinders and ASHP, optimisation within the FUSION system comes from Adveco’s purpose-built FUSION Control Box. This smartly balances the two heat sources enabling the water in the cylinder to be heated in the most efficient way. The heat pump’s contribution is maximised, achieving a working pre-heat flow temperature of 50°C under UK weather conditions, even if the ambient air temperature drops as low as -25°C.

With the cylinder water pre-heated by the ASHP, the ARDENT boiler is not required to work as hard to raise flow temperatures to the 65°C demanded by commercial applications. Electrical demand on the boiler is reduced by as much as 30%, delivering operational savings and reducing carbon emissions by up to 71%. This variant is perfect for organisations seeking to invest in a water heating application as part of a decarbonisation strategy without losing sight of higher operational costs associated with all-electric systems compared to equivalent gas-fired water heating.

Where hot water demands become a business-critical service, FUSION will also support the addition of an Adveco backup immersion providing additional resilience. Fitted into the front-facing clean-out access, the immersion ensures there is no single point of failure for assured service provision. When only used as an emergency heating source, or during periods of unplanned excess demand, the inclusion of an electric immersion can be extremely advantageous. For FUSION systems incorporating the additional backup immersion (FUSION FPH-Eplus & FPH-Tplus) controls are further extended to incorporate SMS output to advise building managers of a fault scenario and automated engagement of the immersion back-up to guarantee business-critical hot water supply.

For commercial organisations specifying a sink or basin-led hot water system for new buildings faced with regulatory changes on new gas connections, or planning to move from existing gas-fired systems to electrical alternatives FUSION provides an impressive range of choices whether cost, sustainability or business security are the driving factors for specification.

Read more about Adveco FUSION

 

all electric banner

All Electric ? Sustainability & Water Heating Pt.3

In this three-part series, Adveco has so far addressed the role of air source heat pumps and solar thermal as a source of low carbon preheat, in this final part, we consider the future of gas and the adaptation to all electric applications for implementing more sustainable hot water in commercial buildings.  

Read Part 1 Sustainability & Hot Water – Which Path Is Right For Commercial Properties? 

Read part 2 sustainability & Hot Water – Using The Sun

Despite the pressure to address carbon emissions in building stock in the UK, the fact is we are still waiting for clear advice at a government policy level. The final decision on energy solutions remains unresolved. So do you opt to go all electric with equipment now on the basis that the grid will become zero carbon or hold out for the option of carbon-free gas such as Hydrogen, which in terms of infrastructure change and refurbishment would be potentially quicker, cheaper and less disruptive.

As indicated, if your building has a gas connection and has high hot water demands it remains the most cost-effective option. Additionally, new gas-fired appliances operate with ever-reduced emissions, and most are ready to accept the initial proposed 20% hydrogen blends in the gas grid as early as 2024 without requiring any alteration. ‘Hydrogen Ready’ units are, with a replacement of the burner and pre-mixer, even capable of burning 100% hydrogen, but that scenario is some time away. Should hydrogen be accepted by the government as a function of net zero we would not expect 100% feeds to be in place nationally until 2040 with the grid changeover beginning in the early to mid-2030s. Retaining an existing gas connection, therefore, provides a degree of futureproofing should green gas technology be embraced.

What is clear though is that the latest building regulations (Part L, 2021) have radically revised the carbon intensity of electricity from 519g CO/kWh ten years ago to just 136 today. Gas in the same period has fallen from 240 to 233. Whilst the regulations do not yet exclude gas, they do advantage the adoption of all electric systems. We have demonstrated that renewables have a critical role in reducing the carbon emissions of a system, as well as offsetting the costs of heating water with direct electricity.

Gas-based hot water applications are, by a factor of 3.8, currently cheaper to operate than direct grid-electric systems. Using heat pumps can offset 25-35% of those energy costs, but this still leaves a considerable excess operating charge because of the need to provide top-up energy for safe operating temperatures. Historically, additional system top-up was provided by electric immersions, which for backup purposes and occasional peaks in demand whilst more expensive was acceptable. The shift to fully electric systems has put a greater onus on the technology which was never designed to provide primary heat. The costs are excessive and as we indicated, should they be deployed hard water, can rapidly develop scale leading to permanent damage in a remarkably short time. For this reason, we recommend the replacement of immersion technology with smaller electric boilers that are both more efficient, and, because they operate in a closed loop will avoid the issues of systems scaling up.

Perhaps the most detrimental issue we see today as a result of replacing gas with electricity is the propensity to oversize the new all electric system, replacing gas appliances with electric alternatives with like-for-like capabilities. Hot water systems have been inherently oversized in the past through a lack of understanding of application design or concerns over providing suitable backup to ensure system continuity. The result of oversizing is however always the same, unnecessary capital costs for system supply and installation, but when replacing gas with electricity, oversizing leads to greater electrical demand and should that exceed a building’s available amperage of electrical supply, project installation costs will inevitably soar, or even stall the project.

This can best be avoided by understanding your building’s actual hot water demands and designing the replacement to meet those specific needs. There is an art to designing hot water systems, but real, actionable data is priceless. When considering options for introducing sustainability the best advice we can give is to understand your needs first. Live metering is an easy, non-intrusive way of securing the valuable operational data you need to make informed decisions that deliver on expectations to lower carbon emissions without incurring unforeseen costs.

 

Using the sun banner

Using The Sun – Sustainability & Water Heating part 2

In this three-part series Adveco considers the choices available to commercial organisations that wish to advance decarbonisation strategies in their buildings through the implementation of more sustainable hot water. In part 1 we considered the role of air source heat pumps as a source of low carbon preheat, now we turn our attention to using the sun with solar thermal systems…

Read Part 1 Sustainability & Hot Water – Which Path Is Right For Commercial Properties? 

Using the sun to generate free heat from solar energy is a well-recognised and proven route for introducing renewables into a building project. As a high-temperature renewable source of hot water, solar thermal lends itself to working in conjunction with not only conventional gas heating but also other renewable technologies including air source heat pumps which can be used to provide pre-heat to solar thermal. This enables a variety of hybrid applications to be considered to meet the varied demands of commercial buildings.

Solar thermal systems are ideal for businesses that use and rely on large amounts of hot water, but it is important to understand that a solar thermal system will not fully replace your existing water heating system and will not provide space heating.

All areas of the UK are suitable for using the sun through solar energy technology; however, solar insolation, the energy generated from sunlight within collectors, will decrease as the sun’s inclination falls in the winter months and this is affected by how northerly located a building is in the UK as well as cloud cover. When it comes to using the Sun, solar thermal systems are obviously most productive in the summer months, when there is most sunlight, resulting in the additional need for either non-renewable energy sources or heat pumps which will still generate usable year round, even if ambient outside temperatures drop to -20°C during the winter months.

Shading from neighbouring buildings or tall trees, for example, can also greatly reduce a solar system’s output in which case a commercial air source heat pump would be a preferred alternative to produce low-carbon heat energy.

The actual percentage of your water heating demand covered by solar thermal will depend on your site and energy consumption habits (though this figure is typically around 30% for commercial sites). A south-facing and unobstructed roof with an inclination of 30° from the horizontal is optimal, though by no means essential as solar collectors can be installed in a variety of ways: built on the roof; built in roof; mounted on walls or on a frame construction to achieve inclination on flat roofs.

Sized and installed correctly, a single solar thermal collector can contribute up to 1400kWh per annum, providing electricity savings of £300 and more importantly reducing emissions of CO² by 322kg.

It is important to recognise that solar thermal differs from solar photovoltaic or Solar PV as it is known. Solar PV uses solar cells in a panel to convert the solar energy into electricity that can be stored, used as required, and even be sold back to the grid. Solar thermal works by a process of fluid heating in the collector panels that is then transferred via indirect heating in the cylinder into the hot water system.  This requires basic plumbing for its installation and a minimum 3m drop to ensure flow. This does mean it is really only suited to installation on a building, rather than in the grounds, although that helps reduce the threat of vandalism compared to frames installed on ground level.

Giving consideration only to the hot water system, solar thermal is still more advantageous compared to equivalent-sized solar PV systems. For example, a 4kW solar PV system and the equivalent solar thermal system will cost almost the same to purchase and install, with minimal operational costs, but solar thermal will exhibit a much smaller physical footprint. A typical 4 kW PV system would require 16 collectors at 25m², whereas this would be matched by just three solar thermal collectors for a total footprint of 6.6m². This makes solar thermal a better choice for buildings with reduced roof space, especially if sustainable projects are intending to introduce a mix of solar thermal, heat pump and solar PV. The silent operation of solar is also a consideration factor.

To ensure system longevity and return on investment, fluid within the solar collectors must be correctly managed. If left in the panel it can overheat, stagnate and leave collectors irreparable. This can be avoided by incorporating Drain Back into solar system designs. This gravity flow approach reduces pump capacity requirements and energy use of the pump station to a minimum and will automatically drain fluid if power is cut without the need for working components. This makes solar thermal systems with drain back low maintenance with long operational lifespans. Fluid refresh is, on average, required every eight years but may last much longer.

Certain commercial system designs can demand a minimum of 45°C of preheat which, due to annual variation in production, could preclude the use of solar thermal as a lone preheat source. This does match the minimum working flow temperature for preheat that would be designed into a system utilising the current generation of air source heat pump.

Under such conditions, a typical sustainable application would see a cylinder sized to meet the storage requirements of the building’s hot water demands with the heat coming from a combination of an air source heat pump and solar thermal collectors working in conjunction to guarantee the preheat temperature. The heat pump, operating at optimal efficiency at lower temperatures will preheat the 5°C cold feed to 45°C at which point the solar thermal is employed to further raise temperature to 50 or 60°C depending on the time of year. Working together the renewables can offset the majority of the electrical costs otherwise required to heat the water, even during periods of peak demand.

Using the sun to provide energy to preheat a hot water application or top-up preheat in a hybrid hot water application is truly advantageous, but is not a singular response for the total hot water demand in commercial organisations.  In the third and final part of this blog series we will we consider the future of gas and the adaptation to all-electric applications…

 

 

Sustainability water heating part 1 banner

Sustainability & Water Heating

In this three-part series on sustainability & water heating, Adveco considers the choices available to commercial organisations that wish to advance decarbonisation strategies in their buildings through the implementation of more sustainable hot water.  

In this first part we consider some of the basic constraints of designing water heating applications, the technology available and the role of air source heat pumps…

Which Path Is Right For Commercial Properties?

Estimates vary, but it is generally accepted that buildings are responsible for as much as 50% of the nation’s carbon emissions, with much of the existing building stock still dependent on gas, which, while increasingly efficient to use is a ‘dirty’ fossil fuel. Daily hot water usage can potentially account for as much as 30% of a commercial building’s daily energy demands so is a notable component of an organisation’s emissions. So sustainability & water heating go hand in hand, and the latter should be one of the first considerations within a decarbonisation strategy.

The relatively lower cost of gas compared to grid electricity, and the necessary high working flow temperatures it delivers have therefore made it historically the energy of choice. This becomes problematic if sustainable operations are now the goal. As a matter of course, new builds, unless exhibiting large demands for gas, will struggle to receive permission (under Part L of the building regulations) for a new gas connection and as a result, are going ‘all electric’ for heating and hot water. With modern construction fabric and insulation, this approach can pay dividends. For legacy properties requiring refurbishment, the choices become more problematic, especially for space heating where modern low-temperature systems need replacement pipework and heat emitters or will fail to deliver. Though this is not an issue for replacement hot water, the complexity of both new build and refurbishment can still suffer costly pitfalls in the drive to sustainability. With electricity on average currently costing as much as 3.8 times that of gas, serious consideration needs to be given to a selection of technologies available to ensure that any changes to a hot water system balance the carbon reduction with the capital and operational costs.

The Options For Sustainable Water Heating

There are several options when it comes to implementing a hot water system and as we have intimated some are driven by finance others by the desire to be environmentally aware. Other factors though can include everything from geology to available space. A building’s location will instantly direct certain decisions as the hardness or softness of the water will impact options. For instance, stainless steel cylinders will be preferential in soft water areas as they are resistant to the corrosive nature of the water, whilst lower-cost glass-lined vessels are preferable in harder water areas. However, high-intensity heating, such as delivered by electric immersion can be extremely detrimental in hard water regions, accelerating limescale generation to the point that it can irreparably damage a system in a matter of months if not correctly maintained.

That does not preclude electricity as a choice, but it does affect how applications should be designed. The real leading question is do you choose gas or electricity? If gas, do you opt for direct or indirect heating systems or if electricity do you choose immersion or electric boiler as your source of thermal energy? Whichever route you decide upon, your system will additionally require a low-carbon heat source which will preheat the water reducing the energy consumption of the water heater, and in turn, reduce carbon emissions and the running costs of the water heater.

There are several choices for securing low carbon heat, including biomass; combined heat and power (CHP); ground or water source heat pumps; air source heat pumps (ASHP), solar photovoltaics (PV) and solar thermal.  Through a mix of cost and simplicity, the best technologies to use for domestic hot water (DHW) systems are either ASHP or solar thermal.

Heat pumps are a technology that operates most efficiently at lower temperatures, making it highly applicable to domestic applications, but commercial DHW systems require 60°C working flow for safe operation and anti-legionella processes. The heat pump can be pushed to deliver a higher percentage contribution, generating temperatures of 45-50°C for preheat, but this at the cost of performance efficiency, requires electrical energy, and that has operating cost implications. Compared to an equivalent-sized direct-electric (ie, from the grid) system, one with an ASHP can achieve carbon reductions of 42-47%, whilst saving 25-35% of the energy costs. The system will still be required to top up heat to the necessary 60°C, using either immersion or an electric boiler. This, combined with the heat pump’s reduced operational efficiency means it will still be much more expensive to run than an equivalent-sized gas-fired system based on a modern and efficient (109% net) water heater.

The recommendation, in this case, is to keep electrical demand down by increasing the size of the hot water storage which is then heated more slowly. This is very different to the high energy input, low storage seen with gas-fired systems. A 30kW energy source can heat 750 litres/hour by 34°C, so when the system draws hot water at a faster rate than it can be heated to 44°C for hot showers you start to get complaints that the water is ‘cold’. The larger volume cylinder helps to overcome this undersizing allowing for a two-hour reheat cycle that maintains enough water at 60°C to meet daily demand, whilst slowly heating reserves through the night when demand is minimal to meet the morning peak.

Despite gaining improved sustainability & water heating modernisation the carbon savings and costs no longer align.

Even with an ASHP operating at optimum efficiency (for 35% recorded reduction in energy) costs would be close to three times that of gas alone, so it is inherently important to consider the nominal value of the carbon reduction when planning a refurbishment from gas to electricity.

However, we can still take advantage of solar thermal which can be employed to offset energy use in gas-fired systems as well as offsetting costs in electric/ASHP applications.

We will discuss this further in part 2

noise pollution

Noise Pollution – What You Need To Hear

Noise pollution is a serious problem that can cause a variety of health problems and also be damaging to the wider environment. As such, its prevention will be a consideration for any design & build project in the commercial sector.

Noise management is a complex issue and at times requires complex solutions. Unlike air quality, there are currently no European or national noise limits which have to be met, although there can be specific local limits for specific developments. Furthermore, sound only becomes noise when it exists in the wrong place or at the wrong time such that it causes or contributes to some harmful or otherwise unwanted effect.

Unlike many other pollutants, noise pollution depends not just on the physical aspects of the sound itself, but also on the human reaction to it. Consequently, there is a range of legislation that addresses everything from clearly identifying sound levels of products to those regulating construction quality and setting acceptable noise sound levels within the working environment.

There are many causes of noise pollution. Traffic & construction noise is the most recognised sources of loud noise, but commercial machinery & equipment also contribute and are more likely to be a consistent generator of sound that over time becomes identified as a noise pollutant.

Noise pollution can have a number of negative effects on human health. It can cause hearing loss due to exposure to loud noise over a long period of time, but stress, anxiety and irritability, often associated with sleep disturbances is more common as will be a typical issue raised against commercial operations, especially if located close to residential land use. The disruption of local ecosystems and the impact on wildlife due to loud noise can also become an issue for a business.

The provision of hot water to commercial buildings is very often a business-critical function of daily operations and this can well be 365 days a year, so its important to give consideration to sound levels generated by the domestic hot water (DHW) plant. Fortunately, a typical gas-fired commercial water heater emits a conversational 55-65 decibels. This is further reduced with electric units, such as Adveco’s ARDENT electric boilers that produce just 35-58 decibels – quieter than an average conversation. To put that into perspective a domestic fridge will average at about 45 decibels, typical road traffic, heard from inside a car will rate at around 85 decibels.

Located within the plant room, this level of noise should prove to be of little concern. Many plant rooms will be located in basements or on separate floors, where noise is naturally muffled, or can be more acoustically controlled. The growing popularity of offsite constructed plant rooms, does mean these appliances are increasingly being located to maximise space in car parks, unused alleys and especially rooftops. This reduces the potential for noise pollution for the building’s users but could become an issue with neighbours as the GRP structures offer less capability to reduce sound. For boilers and water heaters, the noise as indicated is minimal and should not be an issue, but external baffles can be erected to deflect noise from any neighbouring structures.

Sound carries further when unimpeded, so the external location of commercial equipment is where there are likely to be issues, if any. With the drive to attain greater sustainability of systems, reducing carbon and offsetting more expensive electric energy costs, new DHW systems will take advantage of technology such as air source heat pumps (ASHP) or solar thermal to provide system pre-heat. Unlike gas and electric water heaters, this green technology must be located outside to operate. There is a major push for the UK to adopt ASHPs as a way to generate low-carbon heating, but concerns over noise remain one of the key stumbling blocks to their wider adoption, especially when applied to residential applications, whether domestic or across the leisure and hotel sectors.

Heat pumps will generate noise, due to the pump and fan rotation, and this can be a particular concern during night-time operation. At Adveco, we strive to research and manage our products to meet and exceed the criteria set by our customers, and much attention has been paid to the acoustics of our ASHP ranges. For example, at 52 dB(A), the Adveco FPi32 heat pumps are extremely quiet during normal daily operation, but also feature ‘quiet time operation’ to reduce noise pollution at night. This helps to address concerns, reducing outdoor noise pollution and improving the comfort of the working environment.

Decibel scale

 

Better still is Adveco’s near-silent solar thermal with drain back. An excellent way to achieve as much as 30% of the annual energy demands to run commercial DHW applications, solar thermal collectors required placement on the rooftop or external walls of a business. Because solar thermal drain back uses gravity flow for a large proportion of its operation, the system’s only mechanical aid is a small, near-silent pump. This makes solar thermal an excellent option for introducing cost-effective, sustainable water heating to a building without any concerns of generating noise pollution or having a project stall due to enforcement of noise regulations for external systems.

With the ever-increasing need for commercial companies to be more environmentally friendly, reduction of carbon and NOₓ emissions from the hot water application are going to top the agenda when it comes to new build or refurbishment, but addressing noise pollution should also be a consideration.

sustainable hot water for commercial buildings using solar thermal

Solar Thermal Applications for Decarbonised Hot Water

As a leader in the design and supply of solar thermal applications for the commercial built environment, Adveco looks at why the technology remains one of the best ways to decarbonise hot water without driving up operational costs.

Solar thermal applications deploy panels with fluid that captures and efficiently transfers solar energy as heat indirectly to the domestic hot water (DHW) system. As a high-temperature renewable source of DHW, Adveco solar thermal lends itself to working in conjunction with not only conventional gas heating but also other renewable technologies including Adveco’s air source heat pumps which can be used to provide pre-heat to solar thermal. This enables a variety of bespoke, hybrid applications to be considered to meet the varied demands of commercial buildings.

Whether a commercial hot water system uses gas or electricity, it will require a preheat source to reduce carbon emissions.

As a rule of thumb, new builds will invariably default to heat pumps. In contrast, properties with an existing gas connection will see greater advantages from the installation of solar thermal which can be extremely effective in reducing reliance on the gas boiler. Even so, offsetting costs in direct electric systems through use of solar thermal applications remains extremely advantageous.

Neither heat pumps nor solar thermal technology currently offers a standalone response for the year-round high temperatures, high volume and peak demands seen in commercial systems. Solar thermal can be combined with a heat pump (which is used to supply initial preheat) to top up heat to a minimum of 60°C required for commercial applications without using direct electric immersions.

A more compact alternative to solar PV for DHW, solar thermal is extremely advantageous where roof space is at a premium due to competition with other heating and ventilation systems on a project. This is especially true of urban projects where solar thermal’s silent operation is also desirable.

Whichever approach is chosen, making an accurate assessment of the needs and limitations of a building first is critical for the correct sizing of the solar thermal system.

Solar Thermal Applications For Carbon Reduction & Significant savings on Running Costs

A commercial system sized to support an occupancy of 50 will typically require 12-24 Rugged 2.24 m² flat plate collectors, whilst smaller systems servicing up to 12 occupants will employ just three to four panels.

Sized and installed correctly, each Adveco solar thermal collector can contribute up to 1400kWh per annum, providing electricity savings of £300 and more importantly reducing emissions of CO² by 322kg.

To ensure system longevity and return on investment, fluid within the solar collectors must be correctly managed. If left in the panel it can overheat, stagnate and leave collectors irreparable. Adveco solar thermal systems avoid this by incorporating drain back into all its solar system designs. This gravity flow approach reduces pump capacity requirements and energy use of the pump station to a minimum and will automatically drain fluid if power is cut without the need for working components. This makes solar thermal systems with drainback low maintenance with long operational lifespans. Fluid refresh is, on average, required every eight years but may last much longer.

With more than 800 systems deployed across the UK, Adveco’s solar thermal applications are an effective renewable which today offers clear cost savings for more rapid return on investment and a proven path to incorporating sustainability into the annual operation of commercial properties.

Discover more at commercial solar thermal hot water systems.