Hydrogen heating systems Adveco

Scenarios For Greener Buildings in the UK

Building Back Greener is the government’s campaign to improve the energy performance of buildings, reduce costs, minimise the impacts of transition on the energy system, and make switching to low carbon systems easier in order to reduce emissions and achieve net zero by 2050. Underpinning this process are three illustrative scenarios for greener buildings that reflect different technology mixes that would allow the decarbonisation of heating in buildings. The three scenarios are high hydrogen, high electrification and a dual-energy system scenario.

Today, the importance of driving these scenarios forward has been given greater urgency by the long-awaited report  from the UN’s Intergovernmental Panel on Climate Change (IPCC). To stay under the critical 1.5C threshold, according to the IPCC, means that carbon emissions from everything that we do, buy, use or eat must peak by 2025, and tumble rapidly after that, reaching net-zero by the middle of this century.

To put it in context, the amount of CO2 that the world has emitted in the last decade is the same amount that’s left to us to stay under this key temperature threshold. “I think the report tells us that we’ve reached the now-or-never point of limiting warming to 1.5C,” said IPCC lead author Heleen De Coninck. This is why quickly achieving goals towards net zero by 2050 is so important if we are to curb the worst implications of global warming – heat waves, drought & flooding.

The immediate focus from the government is to achieve Carbon Budget 6 targets, to ensure the UK is on target to achieve net zero, although many already doubt these budgets will be met as simple measures such as closing down coal-fired power stations are replaced by a far more complex mix of options that deliver more incremental steps to reducing carbon emissions. To achieve the level of emissions reductions across the built environment in line with the government’s delivery pathway to 2037, will take an estimated additional public and private investment of approximately £200 billion which will need to be focused upon one or more of the outlined scenarios.

Three Scenarios for Greener Buildings

The high electrification scenario assumes that there is no significant use of hydrogen for heating in buildings. This may be because hydrogen is not proven to be feasible, cost-effective, or preferable as a solution for low carbon heating, or because its deployment has been significantly delayed.

Under such conditions, the choice would be to continue the rapid growth of the heat pump market which the government has already seen as the best low carbon heating option for new buildings or those off the gas grid.  This would mean increasing new installations (domestic and commercial) beyond the currently envisaged minimum of 600,000 per year in 2028 to up to 1.9 million per year from 2035. Currently, the UK sees approximately 35,000 heat pump installations per year, and commercial demands are already outstripping available stocks in the market as a result of raw material and component shortages caused by Covid.

To ensure the extended level of heat pump deployment, further policy would be required to phase out installation of new fossil fuel heating faster while continuing to follow natural replacement cycles. The proposed increased deployment of heat pumps will need to be accompanied by investment in the infrastructure needed to meet increased electricity demand, including the generation of low carbon electricity and additional grid capacity.

If hydrogen proves both feasible and preferable as a method for heating most UK buildings, and decisions taken in 2026 support a path to converting most of the national gas grid to hydrogen then the high hydrogen scenario would take effect. Pilot projects to provide heating for an entire town by the end of the decade would, once successfully implemented, see an accelerated rollout on a national scale. The conversion would likely start by building out from existing hydrogen production and use in industrial clusters, and roll-out would involve switchover on an area-by-area basis in different locations.

Due to the infrastructure and supply chain requirements of a hydrogen conversion the government estimates new heating system installations should be low carbon or hydrogen-ready, meaning ready for a planned future conversion, from 2035, with approximately 30% of existing low carbon buildings to be supplied by hydrogen at that time.

This does mean approximately 53% of buildings with low carbon systems would be reliant on heat pumps and 15% heat networks. This is why the third, and most realistic of the scenarios for greener buildings is one based around a dual-energy system, where both hydrogen and electrification prove feasible and preferable for heating buildings with a widespread demand for hybrid systems that utilise a mix of energy sources.

For example, if all, or most of, the gas grid is converted to low carbon hydrogen, but the costs and benefits of switching to hydrogen versus installing a heat pump are viewed differently by organisations we might see a high switchover to both hydrogen and heat pumps on the gas grid. Based on differing geographical or built environment factors, there may be a partial, but still extensive, conversion of the gas grid to hydrogen. Under this latter scenario, more careful consideration would be required of which parts of the grid would be converted and where responsibility for decisions about the costs and benefits of converting different areas should lie.

While the government claims it remains early days in terms of determining the policy framework that might support this mixed transition, global conditions, both political and environmental, are driving fresh demands on the government to accelerate commitments.  Any scenario in which hydrogen is an available option from the grid will require public policy decisions to enable cost-effective and coordinated investment in infrastructure and supply chains. If the case for converting the network to hydrogen differs strongly from area to area, more preparation may need to take place at a regional or local level.

What does this mean for the commercial sector?

Whichever scenario becomes the one of choice, you can expect greater consultation over new regulatory powers that can be brought to bear on the commercial sector to bring it into alignment with the government’s goals for delivering these scenarios for greener buildings.

Initially expect to see the phasing out of heating appliances that are only capable of burning fossil fuels. This would be consistent with the ambition to phase out the installation of new and replacement natural gas boilers by 2035, and the phasing out of the installation of high-carbon fossil fuel boilers in commercial properties not connected to the gas grid by 2024.

The government’s Energy White Paper has already set a minimum energy efficiency standard of EPC Band B by 2030 for privately rented commercial buildings in England and Wales. And you can expect further consultation on regulating the non-domestic owner-occupied building stock and consideration on whether this should align with the private rented sector minimum energy efficiency standards. There is also an expectation for a response to the 2021 consultation on introducing a performance-based policy framework in large commercial and industrial buildings, with the aim to introduce a pilot scheme sometime in 2022.

Further consultation is expected on the Small Business Energy Efficiency Scheme (SBEES). This scheme aims to remove barriers for SMEs in accessing energy efficiency measures, drive forward better buildings performance and aid SMEs in meeting regulatory standards.

Finally, you can also expect to see a strengthening of the Energy Savings Opportunity Scheme (ESOS), which is a mandatory energy assessment scheme for large businesses’ energy use and opportunities to improve energy efficiency.

What is very clear at this stage is that commercial organisations face a complex technical and regulatory challenge in the coming decades if they are to successfully navigate to a future with decarbonised buildings across their estates.   Consulting with expert providers at the earliest planning stages can pay dividends in the longer term, balancing the use of cost-effective and familiar technology now with new developments in the mid-to-long term. From a business perspective, the advantages of decarbonisation can be valuable in terms of operational savings and corporate social responsibility gains, but higher capital and operational expenditure also need to be considered if realistic steps are to be made. With more than 50 years of experience delivering bespoke commercial hot water and heating applications and deep knowledge of renewable systems,  including both heat pumps and solar thermal, Adveco is perfectly positioned to advise and assist organisations seeking to begin the decarbonisation process now.