Tag Archive for: hydrogen

Part L – New Building Regulations For Commercial Hot Water

Introducing changes to Part L of the Building Regulations (Conservation of fuel and power) for England represents a commitment to raising the energy performance of buildings to provide a pathway to highly efficient non-domestic buildings which are zero carbon ready, better for the environment and fit for the future. Although due to be formally released in 2025, the first of a number of interim measures come into force this month.

Whilst the new regulations will have a profound impact on new-build projects, refurbishment works are likely to be initially affected by the introduction on June 15th of new restrictions on the specifying of poor-efficiency direct-gas fired water heaters. Under Part L, new regulations for hot water systems essentially end like-for-like replacement for non-condensing water heaters by imposing new minimum efficiencies (91% for natural gas and 92% for LPG).

Each new fixed building service, whether in a new or existing building, must meet the legislated values set out for efficiency. Replacement fixed services must be at least as efficient, either using the same or a different fuel as the service being replaced with matching or preferably better seasonal efficiency.

If moving over to a new fuel system, such as oil or LPG to natural gas, it should not produce more CO₂ emissions nor more primary energy per kWh of heat than the appliance being replaced. If ageing renewables such as wind or solar are being replaced the electrical output must be at least that of the original installation, except where it can be demonstrated that a smaller system would be more appropriate or effective. And if work extends or provides new fixed building services energy meters will need to be installed.

When specifying a DHW system, sizing should be based on the anticipated demand of the building (based on BS EN 12831-3). The regulations demand systems not be “significantly oversized,” but we would argue any oversizing will have a negative impact on the efficiency and operational costs of a DHW system. So accurate sizing is critical in terms of delivering an optimal thermal efficiency assessment. That assessment will include the heat generator and any integral storage vessel, but will exclude all secondary pipework, fans, pumps, diverter valves, solenoids, actuator and supplementary storage vessels from the calculations.

As a guide the minimum thermal efficiencies for natural gas-based DHW systems, based on gross seasonal efficiency of the heat generator are:

91% –                                 Direct fired for new building with >30kW output*

91% –                                 Direct fired for new building with <30kW output*

91% –                                 Boiler efficiency for indirect-fired systems in new & existing buildings

100% assumed                Electrically heated new & existing buildings

* Product standard BS EN 15502-2-1:2012 for gas-fired boilers and appliances of a nominal heat input not exceeding 1000 kW / BS EN 89 gas-fired storage water heaters for the production of DHW

Adveco carries of range of stainless steel direct-fired condensing water heaters, the AD and new ADplus ranges, and MD boiler range, which all leverage advanced burner control to drive efficiency as high as 106%. Plus glass-lined condensing water heaters such as the AO Smith BFC Cyclone (97% efficient) and Innovo (98% efficient) provide a range of choices that already exceed the latest regulations under Part L and provides a safety net should regulations tighten in the future.

As with the broader regulations relating to space heating, controls form a necessary element of the new Part L regulations for combustion heated DHW systems. These all must incorporate a time control (independent of space heating circuits) and an electronic temperature control.

Additionally, regulations call for fully pumped circulation where compatible with the heat generator for primary hot water circuits. Automatic thermostatic control to shut off the burner/primary heat supply when the desired water temperature is reached, and primary flow if the system temperature is too high for all direct-fired circulator systems, direct-fired storage systems and indirect-fired systems. Direct-fired continuous flow systems should include a heat exchanger flow sensor to control outlet temperatures and detect insufficient flow with burner/heat input shut off. A high limit thermostat is also required to shut off the primary flow if the system temperature is too high.

Point-of-use, local and centralised domestic hot water systems should have automatic thermostatic control to interrupt the electrical supply when the setpoint storage temperature is reached or the system temperature gets too high. If there is an over-temperature trip manual reset should be possible.

Local and centralised DHW systems should have both a 7-day time control and the facility to boost the temperature by using an immersion heater in the cylinder.

Instantaneous water heaters should include a flow sensor to control the rate of flow through the heat exchanger. If the sensor detects insufficient flow, it should shut off the electrical input. Plus, a high limit thermostat is required to shut off the primary flow if the system temperature is too high.

Alongside gas, solar thermal is likely to be applied in the notional building unless heat pumps meet 100% of the actual building’s demand. Solar has been used in calculations in the past to overcome the poor fabric performance of a building. But, given the broad majority of heat pumps are currently used for preheat on commercial DHW applications, at most offsetting 70% of the energy demanded, solar thermal has a valid role to play and it’s a proven sustainable technology. Our expectations are for commercial DHW systems to continue in a familiar manner for the near to mid-term, with gas appliances used to provide cost-effective supply, especially during grid peak hours. Heat pumps and/or solar thermal will be deployed to provide preheat to that system.  As efficiencies improve and higher water temperature (more than 60°C) are achieved through heat pumps we see gas appliances slowly being phased out unless they can be replaced with green gas (hydrogen) alternatives. This naturally leads to the provisioning of hybrid systems for the coming decade, optimising a mix of current technologies that address the latest regulations, reduce emissions and crucially deliver value for money with lower operational costs.

These measures are designed to enforce a move away from fossil fuels to low carbon technology for heating and domestic hot water (DHW) and set a more rapid timeline. There is no doubt these new measures will ultimately represent a seismic shift in thinking when it comes to commercial hot water and heating applications, but a cushion has been built in to allow for the development of systems that are necessarily more complex than would be seen in domestic settings. This brings considerable opportunities for developers and specifiers willing to consider both existing and new technologies in order to deliver compliant applications in the next five years.

Whilst a fabric first approach is encouraged, low carbon technologies are being emphasised. This ultimately means heat pumps for the broad majority of DHW applications where there is a low heat demand. For commercial properties where there is typically a high heat demand gas is still allowed while the industry works to develop suitable alternatives.

One final observation on the implication for the specification and installation of commercial DHW relates to completion requirements. Part L tightens the commissioning requirements to reduce the gaps in performance over design and is intended to deliver improved project handover with accurate energy usage predictions. As a result, we can expect to see revisions of commissioning processes across the industry to help streamline delivery and speed up handover, crucial if government roll-out targets for low carbon technologies to achieve Net Zero by 2050 are to be met and superseded by commercial organisations.

 

Regulation changes take effect on 15 June 2022 for use in England. It does not apply to work subject to a building notice, full plans application or initial notice submitted before that date, provided the work for each building is started before 15 June 2023. Regulation changes do not currently apply to Wales, Scotland or Northern Ireland. 

 

 

 

 

Unlocking The Potential of Hydrogen

For many, unlocking the potential of hydrogen represents a familiar, easier and more cost-effective way to transition to more sustainable heating practices in buildings. It is also increasingly seen as a core shift in the energy trade and critically, in the wake of demands to reduce dependency on Russian oil and gas, the future for regionalisation of energy supply.

In the recent report, Geopolitics of the Energy Transformation, from the International Renewable Energy Agency (IRENA), hydrogen it is estimated will cover up to 12% of global energy use by 2050, with at least two-thirds of total production being green hydrogen (produced with renewable electricity) with the remainder blue hydrogen (derived from natural gas).

Here in the UK, the status of hydrogen remains to be confirmed as part of the government’s push towards attaining net zero by 2050. The Heating and Buildings Strategy published in late 2021 does however begin to give an indication of the growing support for the technologies currently being tested.

The government’s commitment so far extends to the testing and evaluation of the potential of hydrogen as an option for heating workplaces. In partnership with industry, the intent is to “clearly define the evidence needed to make a policy decision about the role hydrogen for heating can play in our future energy system.”

To this end, The Department for Business, Energy and Industrial Strategy (BEIS), supported by Innovate UK and Innovate UK KTN, have launched the Net Zero Hydrogen Fund (NZHF) which was most recently cited in this month’s Energy Security Strategy to focus on unlocking the potential of hydrogen. A funding sum of up to £240m has been made available to explore the development and deployment of low carbon hydrogen production. The funding is intended to de-risk investment and reduce lifetime costs of multiple hydrogen production projects this decade to help ensure a diverse and secure decarbonised energy system that meets the UK government’s stated ambition of 10GW low carbon hydrogen production by 2030, and commitment to reach net zero by 2050.

This investment comes in advance of a declared strategic decision by 2026 on the role of hydrogen in heating buildings. This decision will consider the success of development projects that focus on appliances, such as new gas boilers that can be readily converted to hydrogen (‘hydrogen-ready’) and the testing of conversion of the gas grid. The latter in particular is critical in terms of evaluating the technical and practical feasibility of using hydrogen instead of natural gas for heating. This assessment process is also expected to consider the expected costs, benefits, impacts, and practical delivery implications.

This consultation process will also be a factor in decisions in relation to the future of broader boiler and heating system efficiency and explore the best ways to reduce carbon emissions from our heating systems

According to IRENA, the rise of hydrogen’s potential is linked to the plummeting costs of renewables and electrolysers. This greatly improves the economic attractiveness of ‘green’ hydrogen which also can help deliver on the demands for storage that comes hand-in-hand with greater dependence on wind and photovoltaic (PV) power generation. From this perspective, ‘green’ hydrogen becomes an important technology in the extension of renewable electricity developments.

Although ‘Grey’ hydrogen production, which is solely based on fossil fuels, is expected to be rapidly phased out in the coming decades, ‘Blue’ hydrogen, although also based on fossil fuels, is expected to play a complementary role to ‘Green’ hydrogen, so long as the carbon capture and storage (CCS) is proved viable. As a result, hydrogen and hydrogen-based fuels are now projected to meet a sizeable share of final energy demand in 2050, up from virtually nothing today. To achieve this in the UK, the Heating & Building Strategy report outlines the key processes of consultation required for unlocking the potential of hydrogen beyond 2026.

  • large-scale hydrogen trials: BEIS and Ofgem have liaised with the gas distribution network operators on the conducting of a ‘village’ scale deployment trial by 2025, and a possible town scale conversion project before the end of the decade.
  • Hydrogen blending in the gas grid: to develop the safety case, technical and cost-effectiveness assessments of blending up to 20% hydrogen (by volume) into the existing gas network. This has the potential to deliver up to 7% emissions reductions from the grid. The assessment of indicative cost and value of blending hydrogen is intended to be delivered this Autumn, with the possibility of a policy decision in 2023. This in particular would represent a major first step towards integrating hydrogen in the grid at a potentially national level, but would not require building projects to replace existing natural gas boilers/water heaters.
  • Hydrogen-ready boilers: Consideration will be given to the case for enabling, or requiring, new natural gas boilers to be easily convertible to use hydrogen (‘hydrogen-ready’) by 2026 (in domestic projects). This consultation would also test proposals on the future of broader boiler and heating system efficiency and explore the best ways to reduce carbon emissions from gas heating systems over the next decade. The Heating & Buildings strategy makes clearer the commercial implications where, for the moment, if your business uses gas, then you can upgrade to new gas appliances up until 2035, with hydrogen-ready options extending that window well into the 2040s based on current appliance lifespan.

The local trials and planning, research and development and testing outlined will help develop necessary evidence on the role hydrogen can play in the heating of buildings, enabling strategic decisions to be taken on the role of hydrogen in heating buildings in 2026. This timeframe, and the necessity of its elements, are very important to remember when the media is constantly calling for a decision to be made more rapidly. The implications of a transition to a hydrogen grid are immense, but so are the challenges. It cannot be rushed and it cannot fail if net zero is to be realistically attained, especially across the commercial & public sector built environment.

On the global stage, green hydrogen may strengthen energy independence, security, and resilience by cutting import dependency and price volatility.  However, the raw materials needed for hydrogen remain exposed to shortages and price fluctuations that could negatively affect hydrogen supply chains, cost and revenues. For this reason, hydrogen, if it is green-lit as a core contributor to the UK’s net zero delivery will not do so in isolation. Just as most buildings will currently rely on both gas and electricity, net zero ‘ready’ organisations will most likely have embraced a mixed approach. This will leverage the advantages of air source heat pumps (ASHP), proven solar thermal and natural gas with a hydrogen blend as a redundancy/peak demand back-up through the 2030s and early 40s. Hydrogen ready’’ adoption should be a necessity by the early to mid-2030’s. Then the UK could look forward to full transition to ‘Blue’ then ‘Green’ hydrogen from the late 2030s and throughout the 2040s at a national scale. Regional rollouts will of course redefine these timelines, but, if the policy supports the adoption of hydrogen from 2026, the technology usage path should remain fairly clear for commercial projects looking at unlocking the potential of hydrogen as a part of their corporate drive toward net zero sustainability by 2050.

Scenarios For Greener Buildings in the UK

Building Back Greener is the government’s campaign to improve the energy performance of buildings, reduce costs, minimise the impacts of transition on the energy system, and make switching to low carbon systems easier in order to reduce emissions and achieve net zero by 2050. Underpinning this process are three illustrative scenarios for greener buildings that reflect different technology mixes that would allow the decarbonisation of heating in buildings. The three scenarios are high hydrogen, high electrification and a dual-energy system scenario.

Today, the importance of driving these scenarios forward has been given greater urgency by the long-awaited report  from the UN’s Intergovernmental Panel on Climate Change (IPCC). To stay under the critical 1.5C threshold, according to the IPCC, means that carbon emissions from everything that we do, buy, use or eat must peak by 2025, and tumble rapidly after that, reaching net-zero by the middle of this century.

To put it in context, the amount of CO2 that the world has emitted in the last decade is the same amount that’s left to us to stay under this key temperature threshold. “I think the report tells us that we’ve reached the now-or-never point of limiting warming to 1.5C,” said IPCC lead author Heleen De Coninck. This is why quickly achieving goals towards net zero by 2050 is so important if we are to curb the worst implications of global warming – heat waves, drought & flooding.

The immediate focus from the government is to achieve Carbon Budget 6 targets, to ensure the UK is on target to achieve net zero, although many already doubt these budgets will be met as simple measures such as closing down coal-fired power stations are replaced by a far more complex mix of options that deliver more incremental steps to reducing carbon emissions. To achieve the level of emissions reductions across the built environment in line with the government’s delivery pathway to 2037, will take an estimated additional public and private investment of approximately £200 billion which will need to be focused upon one or more of the outlined scenarios.

Three Scenarios for Greener Buildings

The high electrification scenario assumes that there is no significant use of hydrogen for heating in buildings. This may be because hydrogen is not proven to be feasible, cost-effective, or preferable as a solution for low carbon heating, or because its deployment has been significantly delayed.

Under such conditions, the choice would be to continue the rapid growth of the heat pump market which the government has already seen as the best low carbon heating option for new buildings or those off the gas grid.  This would mean increasing new installations (domestic and commercial) beyond the currently envisaged minimum of 600,000 per year in 2028 to up to 1.9 million per year from 2035. Currently, the UK sees approximately 35,000 heat pump installations per year, and commercial demands are already outstripping available stocks in the market as a result of raw material and component shortages caused by Covid.

To ensure the extended level of heat pump deployment, further policy would be required to phase out installation of new fossil fuel heating faster while continuing to follow natural replacement cycles. The proposed increased deployment of heat pumps will need to be accompanied by investment in the infrastructure needed to meet increased electricity demand, including the generation of low carbon electricity and additional grid capacity.

If hydrogen proves both feasible and preferable as a method for heating most UK buildings, and decisions taken in 2026 support a path to converting most of the national gas grid to hydrogen then the high hydrogen scenario would take effect. Pilot projects to provide heating for an entire town by the end of the decade would, once successfully implemented, see an accelerated rollout on a national scale. The conversion would likely start by building out from existing hydrogen production and use in industrial clusters, and roll-out would involve switchover on an area-by-area basis in different locations.

Due to the infrastructure and supply chain requirements of a hydrogen conversion the government estimates new heating system installations should be low carbon or hydrogen-ready, meaning ready for a planned future conversion, from 2035, with approximately 30% of existing low carbon buildings to be supplied by hydrogen at that time.

This does mean approximately 53% of buildings with low carbon systems would be reliant on heat pumps and 15% heat networks. This is why the third, and most realistic of the scenarios for greener buildings is one based around a dual-energy system, where both hydrogen and electrification prove feasible and preferable for heating buildings with a widespread demand for hybrid systems that utilise a mix of energy sources.

For example, if all, or most of, the gas grid is converted to low carbon hydrogen, but the costs and benefits of switching to hydrogen versus installing a heat pump are viewed differently by organisations we might see a high switchover to both hydrogen and heat pumps on the gas grid. Based on differing geographical or built environment factors, there may be a partial, but still extensive, conversion of the gas grid to hydrogen. Under this latter scenario, more careful consideration would be required of which parts of the grid would be converted and where responsibility for decisions about the costs and benefits of converting different areas should lie.

While the government claims it remains early days in terms of determining the policy framework that might support this mixed transition, global conditions, both political and environmental, are driving fresh demands on the government to accelerate commitments.  Any scenario in which hydrogen is an available option from the grid will require public policy decisions to enable cost-effective and coordinated investment in infrastructure and supply chains. If the case for converting the network to hydrogen differs strongly from area to area, more preparation may need to take place at a regional or local level.

What does this mean for the commercial sector?

Whichever scenario becomes the one of choice, you can expect greater consultation over new regulatory powers that can be brought to bear on the commercial sector to bring it into alignment with the government’s goals for delivering these scenarios for greener buildings.

Initially expect to see the phasing out of heating appliances that are only capable of burning fossil fuels. This would be consistent with the ambition to phase out the installation of new and replacement natural gas boilers by 2035, and the phasing out of the installation of high-carbon fossil fuel boilers in commercial properties not connected to the gas grid by 2024.

The government’s Energy White Paper has already set a minimum energy efficiency standard of EPC Band B by 2030 for privately rented commercial buildings in England and Wales. And you can expect further consultation on regulating the non-domestic owner-occupied building stock and consideration on whether this should align with the private rented sector minimum energy efficiency standards. There is also an expectation for a response to the 2021 consultation on introducing a performance-based policy framework in large commercial and industrial buildings, with the aim to introduce a pilot scheme sometime in 2022.

Further consultation is expected on the Small Business Energy Efficiency Scheme (SBEES). This scheme aims to remove barriers for SMEs in accessing energy efficiency measures, drive forward better buildings performance and aid SMEs in meeting regulatory standards.

Finally, you can also expect to see a strengthening of the Energy Savings Opportunity Scheme (ESOS), which is a mandatory energy assessment scheme for large businesses’ energy use and opportunities to improve energy efficiency.

What is very clear at this stage is that commercial organisations face a complex technical and regulatory challenge in the coming decades if they are to successfully navigate to a future with decarbonised buildings across their estates.   Consulting with expert providers at the earliest planning stages can pay dividends in the longer term, balancing the use of cost-effective and familiar technology now with new developments in the mid-to-long term. From a business perspective, the advantages of decarbonisation can be valuable in terms of operational savings and corporate social responsibility gains, but higher capital and operational expenditure also need to be considered if realistic steps are to be made. With more than 50 years of experience delivering bespoke commercial hot water and heating applications and deep knowledge of renewable systems,  including both heat pumps and solar thermal, Adveco is perfectly positioned to advise and assist organisations seeking to begin the decarbonisation process now.

Fossil Fuels – Their Future In UK Commercial Buildings

The future of fossil fuels is a key issue that needed to be addressed by the government’s Heating & Buildings Strategy report which was published late last year. Statistics (PDF) from the Non-Domestic National Energy Efficiency Data-Framework (ND-NEED) from the Department for Business, Energy, & Industry Strategy (BEIS) defined more than 1,656,000 non-domestic buildings in England and Wales at the end of March 2020. 278,000 or 17% of this building stock is off-gas grid. It is estimated that these non-domestic buildings are responsible for nearly one-fifth of the UK’s carbon emissions, a scenario that will be further exacerbated by a predicted one-third rise in non-domestic floor space by 2050.

A major function of the campaign to Build Back Greener, the report outlines the near and long-term ambitions for phasing out unabated fossil fuels and a transition to low-carbon heat in order to achieve net zero in the UK. The intention is to use ‘natural replacement cycles’ and seek ‘trigger points’ to set long-term expectations within the building sector.

For commercial on-gas-grid buildings, this means putting in place a process to phase out installation of new natural gas boilers from 2035, with a caveat that the costs of investing in low-carbon alternatives have been suitably reduced. To achieve this will require the development of the market for replacement low-carbon sources of heat. The core technology for driving these new markets will be heat pumps, but there is also to be a consideration for other natural gas replacements. By 2026 the government intends consultation to be completed on the case for gas boilers/water heaters to be hydrogen-ready. The process of ‘greening the grid’ is perhaps the most interesting and least disruptive option, improving efficiency and replacing the current supply for those already connected to the gas grid with alternative low-carbon fuels, whether biomethane or hydrogen injection into the gas supply. The government has already committed to enabling the blending of hydrogen in the gas grid (up to 20% volume) and continuing to support the deployment of biomethane through the Green Gas Support Scheme as a method for decarbonising the gas grid.

To support early adopters in the small business space and lure them away from appliances that burn fossil fuels it has been proposed that a new Boiler Upgrade Scheme be launched this year which will support the installation of low-carbon heat pump based heating systems with a payment of £5,000, in line with domestic applications. Given the current additional complexities of commercial systems, with higher temperature demands, this may not be enough to encourage early adoption without the support of higher temperature devices designed specifically to meet commercial DHW demands. To further drive early adoption, the intent is to limit support for the construction of new gas grid connecting heating systems, effective this year. That does not apply to existing legacy structures with a grid-gas connection. Replacement boiler or water heater connections should be, as a minimum, more efficient than those being replaced. This it is proposed will be driven by the application of smart controls and supported by a new Boiler Plus standard that reflects improved efficiency and carbon savings. This should ape conditions set in ERP standards in 2018 for new boilers and emissions set under SAP10. Given that the latest generation of gas-fired condensing boilers and water heaters already greatly exceed the mandated requirements this policy could be seen to be redundant before it ever comes into law.

For the moment if your business uses gas, then you can upgrade to new gas appliances up until 2035, with hydrogen-ready options extending that window well into the 2040s based on current appliance lifespan. If you are considering upgrading a boiler of water heater, you could opt for a natural gas appliance, one that is not considered hydrogen-ready, for at least the next ten years without concerns of breaching new regulations, so long as the new unit is more efficient than the unit being replaced. This provides a safety net while assessing new technology options prior to the 2035 deadline. It would also be well worth considering the implementation of solar thermal preheat for gas-fired systems if you wanted to make sustainability commitments with proven and genuinely renewable technology.

Off-Grid, But Still Being Watched

For the 17% of commercial buildings currently operating off the gas grid, many of which will use LPG variants of boilers or water heaters versus oil, the report proposes phasing out the installation of new fossil fuel heating systems and switching to low-carbon alternatives. Plans would see the introduction of regulations to address large off-gas-grid non-domestic buildings (over 1,000m2) no earlier than 2024, followed by small and medium non-domestic buildings from 2026. Where low-temperature heat pumps cannot be reasonably or practicably accommodated other low-carbon heating options (such as high-temperature heat pumps, and potentially liquid biofuels) may be accepted as an alternative.

The wider aim is to support this near term change with greater investment in heat pump innovation, reducing footprint and making them easier to install. This process is, however, already front and centre for heat pump manufacturers without requesting government support. Better, more efficient, more environmentally and cost-friendly appliances is a clear market driver. At Adveco the recent introduction of the FPi-32 ASHP is a case in point, being extremely compact and better for the environment whilst being more efficient and therefore more cost-effective to operate. Despite being off-grid, potential developments in hydrogen delivery could also be a significant development for the future of fossil fuels, especially in more rural areas, although commercial off-gas grid sites are not uncommon in larger urban areas.

To further encourage this adoption, support for new LPG and oil heating systems could well be refused from this year onwards, with the potential for limited commercial funding support for replacement schemes, depending on scale, coming from the Public Sector Decarbonisation Scheme or the proposed Boiler Upgrade Scheme.

The process of transitioning commercial buildings from fossil fuels to low-carbon will, the report accepts, be gradual. It describes a process similar to the electrification of vehicles, which has depended on a mix of incentives and reducing the cost of entry.

Details of any incentives and clear evidence of where cost reductions are to come from remain hazy. Currently, production and operational costs of heat pumps remain high in comparison to traditional gas appliances that make use of lower-cost fossil fuels. The report, however, anticipates aggressive cost reductions of at least 25-50% by 2025 leading to parity with boilers by 2030. This then anticipates the natural replacement cycles of heating systems throughout the late 2030s and 2040s’ where capital expenditure on low-carbon replacement technology should it believes have lowered substantially. This is why 2035 has been set as the date when all new heating system installations should be low-carbon or hydrogen-ready (at least in those areas where future hydrogen supply has been established) effectively reducing the broad use of fossil fuels across a wide span of the commercial built environment.

Heat Pumps For Hot Water In Commercial Buildings

Heat pumps for hot water is synonymous with the drive to introduce greater sustainability into buildings in the push to achieve net zero by 2050. When it comes to the provision of  hot water (DHW) within commercial building projects there remains a consensus that, despite the rhetoric, currently there is no single ‘silver bullet’ technology able to deliver all the answers.

Until decisions are finally made in 2026 on a hydrogen-based future, the government’s stance is set on electrification, the creation of heat networks and the installation of heat pumps for hot water. For organisations looking for a quick sustainability win then heat pumps provide a clear opportunity, so long as the property is a new build. For new commercial builds, consultants are already specifying a greater electrical load to account for the additional power demands to support a mixture of heat pumps and direct electric afterheat necessary to meet the higher water temperatures and volume demands exhibited in commercial projects. New DHW systems will predominantly follow this model, taking advantage of heat pump performance efficiencies to create a hybrid approach to deliver pre-heating for as much as 75% of the water in a direct electric system. And with no gas to the building, no local generation of NOₓ and no flue to install this clearly has its advantages.

With 50 years of specialist experience in creating bespoke commercial DHW systems, Adveco is well-positioned to support such projects with a wide range of air source heat pumps for hot water, as well as indirect tanks and electric immersions.

Compatible with existing DHW distribution systems with higher thermal requirements, the FPi32 ASHP range is ideal for integration into a hybrid hot water system. Transferring heat from the air to a building, the FPi32 can provide a working flow of hot water at 55°C throughout the year, even when ambient air temperatures drop as low as -25°C.  When combined with either a gas or electric water heater and controls, the FPi32 helps reduce emissions and increases efficiency without compromising reliability or performance.

Packaged Systems With Heat Pumps For Hot Water 

The three models, available in 6, 9 and 12kW variants provide a low carbon source of hot water in a more compact, quieter, more efficient and easier to install unit. The FPi32 also sits at the heart of two pre-sized offerings, FUSION and the e-32 Packaged Hot Water System. For organisations with small to medium basin and sink led hot water demands, FUSION offers 16 pre-specified variants. With a choice of 6 or 10 kW preheat and 9 or 12 kW electric top-up, FUSION offers capacities ranging from 200 to 500 litres all rated at 10 BAR for high-pressure applications. Combining the FPi32 with a high-pressure ATSH calorifier with electric immersion, controls, and metering, FUSION systems are able to meet a range of continuous capacity hot water demands from 257-377 litres/hour for a wide range of commercial buildings.

Where space is at a premium, the e-32 Packaged Hot Water System comes into its own. This prefabricated all-electric water heating system uses an FPi32-9, a 200L GLC indirect preheat tank and a 200L GLE direct electric water heater all housed in a compact GRP housing. This ‘plant room in a box’ can be conveniently positioned externally on flat roofs or in unused or ‘dead’ spaces. This makes the system ideal for a wide range of commercial properties with regular hot water demands such as restaurants and boutique hotels, offices, schools, and light industry. The system is also exceptionally useful if refurbishing existing building stock.

Larger DHW demands

For projects with greater DHW demands, Adveco’s L70 high-capacity air-to-water monobloc heat pump is rated 70kW for typical UK operation at 5°C but climbing to a maximum 90 kW from a single compact unit. With a seasonal coefficient of performance (SCOP) as high as 4.08 the L70 is perfect for large scale commercial applications and can operate as part of a cascade installation for projects demanding greater capacity.

Able to draw and transfer thermal energy from the air, under the right circumstances, such as new builds with a high degree of insulation, using heat pumps for hot water represents an efficient way to significantly reduce the carbon emissions of a building. As the cost of grid electricity closes on that of gas, ongoing savings garnered from operating a hybrid ASHP based system, plus the reduction in CO₂ emissions makes the technology a truly attractive prospect for the latest commercial building projects.  New innovations in heat pump technology and refrigerants this coming year will further enhance the advantages of the technology cementing it position as a truly viable alternative for the provision of commercial-grade hot water.

For more visit Adveco’s renewables page

NOx On Effect

A major contributing factor to poor air quality, nitrogen oxides are a group of gases that are mainly formed during the combustion of fossil fuels. The dominant portion of these gases is nitric oxide (NO) which in turn can react with other gases in the atmosphere to form nitrogen dioxide (NO) the most toxicologically significant of the nitrogen oxides.  These reactions take place very quickly and are reversible, so the two gases are referred to together as NOx. Short-term exposure to concentrations of NO can cause lung irritation and respiratory infections, but medical studies have also linked the gas to cancer, asthma, strokes, and heart disease. In addition, NOx can cause changes to the environment, so consideration should be given to its control as part of your organisation’s sustainability activities.

Typically, a by-product of the combustion of hydrocarbon fuels, it is especially problematic in city centres due to idling traffic. In large parts of the UK, the atmospheric levels of NO are considerably higher than European legal limits and the Royal College of Physicians believe it directly leads to as many as 40,000 deaths each year with an estimated cost to the country of £20 billion in healthcare and lost working days.

Critically as greater political and legal weight is brought to bear on addressing climate change it is worth remembering that nitrogen oxides also act as precursors for the formation of ozone, which is not only damaging to health but has adverse effects on the environment through oxidative damage to vegetation. Introduction of N to the environment both directly as a gas and in precipitation can also change soil chemistry and affect biodiversity.

This has led to widespread recognition that more needs to be done to address the issue of NOx, from transport to energy production, distribution, and consumption in buildings.

Traditional energy generation by coal, gas and oil-fired power stations comes with several issues, including being NOx heavy. It, therefore, became popular to look at the alternatives: renewables which help with both carbon and NOx emissions. As such, low carbon electricity’s share of generation has risen delivering a major shift away from generation in large power stations. Since 1990, wider industrial emissions of nitrogen oxides to air have reduced by 74%, although estimates of projected emissions to 2030 suggest further action is required if we are to meet government emission reduction targets. These industrial reductions mean that most of a city’s current air pollution and NOₓ now arise from road traffic and buildings.

The most recent published annual air quality assessment providing data from 2010 until 2019, shows the UK was in compliance with commitments to current emission ceilings for nitrogen oxides. However, the UK continues to be non-compliant with the limit value placed on the annual mean NO concentration at several locations in urban areas. At these locations, it has been estimated that up to 80% of the NO concentration originates as NOx emissions from road transport. But buildings still stand as a key potential contributor to the other 20%.

Managing NOx Emissions From Commercial Properties

In 2018, the European Union’s Energy-related Products Directive (ErP) was used to begin phasing out the installation of less efficient equipment across Europe, including the UK. This would be achieved by establishing minimum performance standards for new equipment, with greater focus placed on heating and water heating performance in buildings. The new ErP directive enforcing maximum NOx emissions from boilers and water heaters which were set at 56mg/kWh for gas/liquefied petroleum gas (LPG) and 120mg/kWh for oil-fired products. At the time the EU predicted the new directive would produce a 20% reduction in energy consumption and emissions when replacing older equipment with ErP-compliant products

The drive towards net zero and the reduction of carbon in buildings is helping to further drive down NOx and where new builds are opting for heat pump and direct electric hot water and heating applications gas to the premises is excised. So no gas, no flues, no NOx. Refurbishing existing properties is more complicated, with low-temperature Air Source Heat Pump (ASHP) based systems typically unable to efficiently address demands. Under these scenarios, a combination of solar thermal and gas top-up for water heating is preferable and leaves sites futureproofed for next-generation green gas technologies. Realistically hydrogen grid connectivity is unlikely for the majority of the UK until the mid-2030s at the earliest, so attention needs to be applied to how gas-based systems can be optimised now to reduce emissions to levels even lower than those established under the ErP directive.

To improve combustion efficiency, condensing gas water heaters and boilers operate so that the water vapor in the exhaust – which contains about 464 kJ/kg of latent energy – condenses on the heat exchanger and not in the flue or outside the building. Designed so that the highest efficiency is at the low end of the firing range, condensing boilers typically operate at 94-95% combustion efficiency. Correctly sized and professionally commissioned, a cascade system for larger demands with high-efficiency pre-mix burners provides a high 1:20 modulation ratio. This large modulation range, along with built-in cascade control ensures that efficiencies are maximised no matter the heating load of the building. With the input of the appliance easily altered to closely match the load, the system is better able to derive as much heat out of the exhaust gases as possible.

With a high-efficiency pre-mix Fecralloy burner, such as employed in the Adveco MD & AD product ranges, ideal combustion efficiency can now be achieved of up to 107% (net)/98% (gross) reducing energy costs and producing ultra-low emissions. The low CO (19ppm) and NOx (27mg/kWh) emissions, from a hot water system built around a high efficiency condensing water heater or boiler (Class 6 appliance) easily satisfy the requirements of the current Energy-related Products (ErP) directive.

In the drive to achieve net zero, and control dangerous emissions, there remains a clear need to address legacy ‘dirty’ buildings. Currently ignored in terms of mandated policy or government support, commercial building refurbishment represents a core challenge for the UK’s climate future. Organisations looking to make steps towards a more environmentally friendly built environment may initially reject any fossil fuel-based option, but the reality is modern systems are advantageous both economically and environmentally and they bridge towards more enveloping carbon neutral and renewable options. If your building’s hot water or heating system predates 2018 then there are advantages to be gained from switching to the latest generation of gas-fired water heaters and boilers, if your system is closer to 15 or 20 years old then you really should be giving serious thought to upgrading appliances. The addition of solar thermal preheat is then going to take your system to the next level in terms of cost and carbon reduction into the 2030s and beyond.

COP26 – The Impact On Commercial Buildings

COP26 is now well underway with cautious optimism over initial agreements on reducing coal, global methane levels and rates of deforestation. But what does the event mean currently for those focussed on buildings in the commercial sector here in the UK?

Firstly, more than 40 nations representing over 70% of the world’s economy and every region have stated they will commit to ‘turbo-charging’ the uptake of clean technologies by imposing worldwide standards and policies at COP26. The five sectors that the plan will cover at first are steel, road transport, agriculture, hydrogen, and electricity, with the intent of encouraging global private investment in low-carbon technologies. The aim is to draw in trillions of dollars in private finance for cutting emissions, and businesses seeking to export into the EU must reach the same standards, so we can expect this to strongly impact the UK.

The Treasury has also outlined at COP26 new sustainability disclosure requirements (SDR) for large UK businesses. Under these new Treasury rules, financial institutions and companies with shares listed on the London Stock Exchange must come up with net-zero transition plans, which will be published from 2023. These net zero transition plans and sustainability claims must be ‘clearly’ justified to set a science-based ‘gold standard’. The government will set up a Transition Plan Taskforce of industry leaders, academics, regulators and civil society groups. The strategies will need to include targets to reduce greenhouse gas emissions, and steps that firms intend to take to get there. However, the government has admitted there is “not yet a commonly agreed standard for what a good quality transition plan looks like”, and the UK was not “making firm-level net zero commitments mandatory”.

450 firms managing banks, insurers and pension funds controlling 40% of global financial assets – equivalent to £95tn – have though aligned themselves to limit global warming to 1.5C above pre-industrial levels. Such private investment in green technologies over brown investments is vital in the march towards net zero by 2050. An example of this was the announced “Breakthrough Energy Catalyst” programme at COP26, which aims to raise up to $30bn of investments and bring down costs for ‘green’ hydrogen, direct air capture of CO² and long-duration energy storage.

But there still remain unanswered questions over what government support for the commercial sector is going to look like, and when it will materialise?  Non-mandatory regulation changes and dependence on private finance to green economic trajectory in the hope that businesses will decarbonise of their own accord remains questionable, especially outside the realms of big business.

At the start of 2021, there were 5.5 million small businesses that account for 99.9% of the business population (5.6 million businesses) in the UK according to the National Federation of Self Employed & Small Businesses. These companies’ buildings continue to generate a considerable proportion of UK emissions, so further support for them is critical. In the coming week, delegations will try to further raise awareness of the need for greater support if building emissions are to be successfully addressed.

Efforts to achieve large scale decarbonisation of buildings have focussed on new builds and recognising a building’s full lifecycle in terms of its carbon cost. But consider this, 97% of EU buildings are in need of renovation, so tackling existing properties must be addressed, only then can a more holistic carbon plan be put in place to support commercial properties to be more energy-efficient and able to support low carbon hot water and heating. This would not only address issues of embodied and emissive carbon but could help reduce air pollution and contaminants that, according to the World Health Organisation (WHO), contribute to the deaths of 120,000 Europeans a year. This issue is raised in an open letter to those attending COP26 from trade bodies that include the European Heat Pump Association amongst others, calling for action on appropriate air quality, thermal comfort, control and automation systems within buildings.

Read about how Adveco can help support your business to improve the sustainability of its’ buildings through our range of low carbon and renewable hot water applications.

Heat and Buildings Strategy Unveiled

The Government’s commitment to decarbonising the UK’s electricity system was confirmed by Prime Minister Boris Johnson and Business and Energy Secretary Kwasi Kwarteng last night with the announcement of the Heat and Buildings Strategy, a “plan to move to clean energy and a carbon-neutral economy.”

The key points announced intend to drive down the cost of low carbon heating technologies like heat pumps, and invest in working with industry to ensure that in future they are no more expensive to buy and run than fossil fuel boilers. Of the £3.9 billion of new funding to decarbonise heat and buildings, £450 million would be funnelled into a domestic Boiler Upgrade Scheme launching in April to help fund the installation of heat pumps for domestic heating.

£1.4 Billion For Public Sector Heating

The remaining funds will be invested over the coming three years through the Social Housing Decarbonisation Fund, the Home Upgrade Grant scheme, and the Heat Networks Transformation Programme and for reducing carbon emissions from public buildings through the Public Sector Decarbonisation Scheme which will be allocated £1.425 billion.

The plan accepts that there will need to be a mix of new, low-carbon heating responses for different property types in different parts of the country – such as electric heat pumps, heat networks and potentially hydrogen. With funding intended to ensure all new heating systems installed in UK homes from 2035 to be low carbon. As previously observed, though, the replacement of a gas boiler with a ‘Hydrogen ready’ appliance would not be in breach of this ‘no new gas boilers’ after 2035 stance. Additionally, gas generation continues to play a critical role in keeping the UK electricity system secure and stable, the development of clean energy technologies intends that it be used less frequently in the future.

The statement from Prime Minister Boris Johnson concludes, “The Heat and Buildings Strategy sets out how we are taking ‘no-regrets’ action now, particularly on heat pumps, whilst supporting ongoing trials and other research and innovation on our future heating systems, including on hydrogen. We will make a decision on the potential role for hydrogen in heating buildings by 2026, by learning from our Hydrogen Village pilot. Heat pump technology will play a key role in all scenarios, so for those who want to install them now, we are supporting them to do so.”

A Luke Warm Reaction?

This much-delayed Heat and Buildings Strategy announcement should be a rallying call to kick-start Britain’s new heat pump industry, and the Government’s continued policy to address carbon emissions is to be applauded. However, the scale of investment appears to fall far short of the numbers typically cited to start to really move the needle when it comes to reducing national carbon emission levels. It also ignores the potential complexity and additional costs surrounding the installation of heat pumps into existing buildings. There also remains considerable question marks over how funding will apply to the commercial sector and for other low carbon systems such as solar thermal. Low cost, low carbon heating for homes is a strong political message, but this sector still only accounts for 15% of the UK’s harmful emissions (Source: BEIS 2019 UK greenhouse gas emissions). Business still accounts for 17% of emissions, with transport and energy supply generating 48%.

The launch of the Heat Network Efficiency Scheme (HNES) demonstrator programme aims to increase the provision of heating services provided to businesses, but as the Government states, “There will be no single policy or technology that cuts carbon emissions to virtually zero, but a diverse mix of technology, such as heat pumps and potentially heating appliances fuelled by hydrogen, alongside green projects like heat networks, that will combine to decarbonise heat in buildings over the next three decades.”

Greater clarity from the Government regarding its position on support for improving hot water and heating systems within non-public sector commercial buildings, therefore, remains elusive. For small to medium enterprises in particular this remains a considerable barrier to introducing low carbon alternatives prior to 2030.

Adveco can help navigate the move to lower-carbon technology for commercial hot water and heating. Talk to us today. 

Bespoke Hot Water and Heating, Celebrating 50 Years Of Excellence

For the past 50 years, Adveco Ltd has been the recognizable face of A.O. Smith in the UK. As with so many businesses, it started with a simple idea from founder Daniel O’Sullivan to improve efficiency and save costs, two core ideals that remain at the heart of everything the business still does today. In 1971, the focus was to support the launderette industry by introducing a simple hot water application that utilized a glass-lined boiler and galvanized hot water storage tank. This unique approach helped to define the early days of the business and created a new market and new demands. The company was later recognised by BSRIA as the instigator of direct gas-fired water heaters in the UK. Today, the company is one of the trusted specialist providers of low-carbon, bespoke hot water and heating to the building services industry.

The first ever UK installed A.O. Smith glass line boiler

Adveco operates across the commercial built environment, working with consultants, specifiers, and designers, providing informed support and partnership to design and deliver systems optimised to be highly efficient and cost-effective. Contractors gain a single, versatile, specialist sales resource that ensures delivery of the most cost-effective system. Facility managers are supported through product remote monitoring, technical support, warranty, and maintenance service to ensure system longevity and help realise a low total cost of ownership.

As a result, our systems can be found across the country, from prestige city sites to university and school accommodations, hospitals and care homes, supermarkets, sports stadia, hotels, restaurants and leisure facilities of all sizes. It is pretty much guaranteed you will have used bespoke hot water and heating from a system Adveco has designed, supplied, and maintains without ever realising it.

50 Years of Bespoke Hot Water Innovation

Daniel O’Sullivan and the sales team inspect the latest models from A.O.Smith

Founded as Advance Services (Sales) Ltd, that initial year defined much of the history of the business with a close partnership formed with the American based water heater manufacturer A.O. Smith. The company would quickly become A.O. Smith’s sole UK distributor, even though it had elsewhere opted for a multi-distributor approach. Here it had become clear that the success in the UK had stemmed from working with a focused single market entity, and the partnership was further ratified in 1998 when Advanced Services Sales Ltd became A.O. Smith’s sole official partner and under its new agreement started trading as A.O. Smith Water Products, and then latterly as A.O. Smith Water Heaters (Adveco AWP) Ltd.

Although Daniel retired in 2000, his son David O’Sullivan continued to grow the family business, maintaining its fierce independence and commitment to innovation. More than just offering distributions services, A.O. Smith Water Heaters had grown a wider reputation for its own in-house engineering capabilities, providing a wealth of knowledge for commercial hot water application design and post-installation service.

In 2015, Adveco Ltd. was established to further develop this capability, as well as providing complementary products to enhance the company’s offering. Operating as an independent sister company to A.O. Smith Water Heaters, Adveco has expanded in recent years, establishing European sales offices and continues its commitment to the design, supply, commissioning and full after-sales support and maintenance servicing, of more than 1,000 commercial boiler, hot water, and solar thermal systems every year.

More recently A.O. Smith has returned to its original multi-distributor model, although its own brand product ranges remain with Adveco / A.O. Smith Water Heaters in the UK. This process has given impetus to the modernization of the business. Though continuing to provide a full range of commercial gas and electric water heaters, boilers, and solar thermal systems from the A.O. Smith portfolio, Adveco is evolving to become a single point of contact for a wider range of commercial bespoke hot water and heating systems that address a market being redefined by the drive to sustainability and the target of Net Zero by 2050.

RP MD Boilers.

MD Floor Standing Boiler

We continue to see increasing demand for near-instantaneous and instantaneous water heating across a variety of projects and are constantly exploring ways to meet this often technical challenge for commercial applications. Within those hot water applications, the highly efficient A.O. Smith BFC Cyclone and Innovo are always a popular choice for commercial projects requiring hot water. The MD range of floor standing condensing gas boilers, which were highly commended in the HVR Awards on launch, have also proved to be very popular for commercial heating, boasting a seven-year parts and maintenance warranty which we are able to offer due to the strong, corrosion-resistant titanium steel construction and smart balancing of the pre-stacked heat exchangers.

Despite the hyperbole, gas remains, at least for the time being, a core element for commercial systems. Familiar, well understood and extremely cost-effective, it remains an important part of the product portfolio for delivery of domestic hot water (DHW) applications and heating.  Adveco’s DHW offering has extended with a range of new stainless steel condensing water heaters to address soft water areas in the UK, alongside a range of stainless-steel cylinders, packaged plate heat exchangers and electric immersion kits which enables greater use of clean electricity for primary and backup heating of water across a range of bespoke tanks. Although we would characterize ourselves as hot water specialists, we can still address the specialist needs of commercial-scale heating with our ranges of floor-standing and wall-hung gas boilers (MD), carbon steel heating buffers (MSS) and thermal storage (MST).

A More Sustainable Future

RP Solar thermal.

Adveco solar thermal with drainback technology

Perhaps most exciting, has been the work to develop systems that are capable of better integrating low carbon and renewable technologies. In 2009, Adveco committed to development in this space with the introduction of its first Solar Thermal systems, working in partnership to develop critical drainback technologies that addressed the massively costly issue of stagnating solar fluid in panels and pipework. There is no doubt in our minds that as the demands for lower carbon applications grow, a combination of Solar Thermal and traditional gas will see a resurgence. But there is a degree of complexity that needs to be recognised and that is where specialist knowledge pays dividends when investing in both new and refurbished properties. Solar Thermal also has a role to play in more advanced hybrid systems that will be more dependent on electricity, the use of heat pumps and heat recovery technologies.

FPi32 commercial Air Source Heat Pumps (ASHP).

FPi32 Air Source Heat Pump

In recent years, Adveco has struck several exclusive manufacturing partnerships to develop air source heat pump (ASHP) technology and products expressly for the generation of preheat for DHW systems. This is necessary to address both building regulations in the UK and our varied Northern European climate.  The fruits of those partnerships have been the launch of the FPi range of Air Source Heat Pumps (ASHP) in 2019, quickly followed by the introduction of the L70 heat pump for larger-scale projects. This year the FPi Range was completely revised with the introduction of a new system based on the more environmentally friendly R32 refrigerant which delivers considerable advances over its predecessors. This development programme continues at pace as we hone designs that help meet the high-temperature demands of commercial DHW. Our development work also includes the creation of the HVR Awards recognised HR001 boxed heat recovery system which was designed and manufactured in-house to support businesses making regular daily use of commercial-grade chiller and freezer units. Commercial systems offer a range of opportunities for heat recovery, essentially gaining ‘free heat’ that can be used to offset energy demands and help reduce carbon emissions from daily operations. Adding heat recovery into your sustainability mix is frankly a no brainer and we continue to explore opportunities for its application within commercial systems.

Packaged Plant Rooms.

Low carbon hot water systems in an Adveco Packaged Plant Room

Bringing all these varied elements together is Adveco’s packaged plant room offering, a bespoke hot water and heating system build that leverages all the advantages of offsite construction. Pre-fabrication is a tried and tested way of bringing mechanical and electrical systems to a live construction site, countering the challenges of complexity, limited space, limited time, and the need to work around other contractors. The concerns over post-Brexit/Covid rising costs, construction projects struggling to attain raw materials as well as a shortfall of experience on-site cannot be discounted. Offsite construction is therefore a great way to address these potential fears.  It just makes things on site much easier and crucially helps to accelerates those all-important project timelines which in turn can help offset other unforeseen project costs.

Packaged plant rooms can almost be treated as a microcosm of our work, a large proportion of which we create as bespoke applications and that includes our smart control systems. So, for Adveco, almost all our projects begin with application design. Without doubt, the rapid changes to legislation relating to efficiency and emissions as we move towards Net Zero by 2050 is having far-reaching implications for our industry. The challenge, certainly for commercial buildings, is to design, supply and then monitor a system for its full lifecycle to ensure the various elements of a system work together, not against each other. The problem is that we are increasingly seeing more cases of the wrong technology being used for the right application: from oversizing for the building, or failure to account for summer heating loads, to under-sizing solar buffer vessels and poorly executed combinations of renewables. Poor sizing has always been a key failure, driving up CAPEX and unnecessarily raising OPEX, but these more varied system design errors must be seen as a result of the rush to be environmentally friendly compounded by the confusion over what that really means in terms of practical technology choices. As an HVAC business, you simply cannot stand still, customers won’t allow for that, so being versatile in the ability to deliver bespoke, engineered systems, is becoming even more of an advantage for us as we look at the changing needs of customers, both in the short and long term. Our application design team provide professional support throughout all stages of a project, from selecting the pertinent product to meet a specific demand to complete system design.  All projects are meticulously sized by our in-house team of qualified industry professionals. This ensures that all applications receive a bespoke, cost-effective design that avoids the typical pitfalls described.

Looking Forward

All eyes are now on the 26th UN Climate Change Conference (COP26) and an expectation of greater clarity from the Government over how the commercial sector will be supported on the road to Net Zero. At Adveco, our approach is to be prepared for all options, whether the future of commercial heating and hot water in the UK will be designated all-electric, hydrogen/green gas, or a mix of the two. This continues to drive our exploration of new technologies and reiterates the advantages of being independent. It enables us to create these critical technical partnerships that allow us to be quick on the uptake of new, or more relevant technologies, whilst continuing to leverage our own deep technical experience. In the near term, we will be further developing our portfolio of heat pumps for commercial applications, as well as designing new hybrid systems that take best advantage of this and other technology. We also see the huge, and cost-effective potential for the large scale roll-out of hydrogen to the commercial sector. All this will require a greater demand for complete system design of which we have deep experience providing bespoke hot water and heating. Ultimately, we come back to the earliest tenet of the company, an unbeatable focus on commercial hot water systems. We already have a strong offering, whether gas and solar, or all-electric with heat pumps, and see this consultancy work, especially for D&B contractors, driving our future growth out beyond 2050.

Tackling Global Warming – Why COP26 Matters

Boris Johnson took to the stage last week to announce we must “grow up” as a species at the UN General Assembly. The UK Prime Minister spoke on how we must look towards greener living for the Glasgow Conference of the Parties (COP) 26 summit. This congregation, it is hoped, will build upon the Paris accord that, in 2015, for the first time saw a singular agreement for tackling global warming and cutting greenhouse-gas emissions.

Why is COP26 So Important?

COP26 will see representation from 200 countries to present plans to cut emissions by 2030 to keep global warming “well below” the Paris established 2°C above pre-industrial levels. The ultimate goal for tackling global warming is to aim for 1.5°C with Net Zero emissions by 2050 to avoid greater climate catastrophe by the end of the century.

Johnson observed that this is our “turning point” to do better and “that means we need to pledge collectively to achieve carbon neutrality – net zero – by the middle of the century.” He expressed clearly the urgency in the actions needed to be taken to, not only, save ourselves but the many species which live on this Earth.

Those countries attending are expected to formally announce their plans for reducing emissions and tackling global warming in the coming weeks prior to the commencement of the summit, with more announcements expected during the two weeks of planned talks.

The US has announced a major investment in green initiatives with an $11.4bn per annum contribution in climate finance and China this week has announced plans to cease construction of overseas coal plants. Though generally welcomed, the latter move currently fails to address the use of domestic coal-fired plants, one of the easiest ways for green gains to be quickly achieved at a national level.

The Real Challenge of “Going Green”

With coal removed, the challenge of tackling global warming really sets in. The UK’s carbon budgets are well known to now be off track, and the Green Alliance has stated current plans will deliver less than a quarter of the cuts needed to meet the UK’s aggressive 2030 climate goal – intended to cut 78% of emissions from a 1990 baseline by 2035. The target also fails to account for emissions created abroad in the process of manufacturing goods bought in the UK. This issue of embedded carbon in the supply chain is a complex and difficult challenge that will no doubt be brought to bear on commercial organisations already facing ESOS audits and SECR reporting, and is why open, large scale support for COP26 from the likes of China is so critical.

Here in the UK, the government’s promise to put effective policies in place has been slow to materialise. Disagreement over the future of gas boilers and wider green funding has held up key announcements that should be delineating much-needed guidance for a commercial sector facing immense change and considerable capital and operational outlay if Net Zero is to be realised.

An End to Coal Power?

There is, however, a cautious sense of progress, with great attention being turned to the meeting in Rome late in October of the G20 nations.  Together these are responsible for 80% of current global emissions. If these nations can agree to cease the use of coal, COP26 has the potential to be one of the most decisive events since Paris if it can lead to a speeding up of the global phasing out of coal power. Then the real work starts. Additional agreements on the reduction of deforestation, a more rapid switch to electric vehicles (EVs) and wider protection from the impact of climatic extremes are all expected to be key objectives.

Johnson declared how these opportunities to become greener are not out of reach as “We have the technology: we have the choice before us.”

Striking a Balance When Heating Commercial Buildings

From the commercial perspective, Adveco is one of the leading proponents of how technology can be best applied when tackling global warming by supporting a more sustainable approach, particularly for the delivery of business-critical hot water. We recognise the importance of excluding fossil fuels from future commercial systems and advocate all-electric systems for new builds. We also understand the implicit costs and difficulties of retrofit and replacement of systems throughout the thousands of legacy commercial buildings that define the UK’s urban landscape. For this reason, we also strongly support the continued use of gas, but within a hybrid approach to provide cost-effective, lower carbon applications that remain future-ready for next-generation Net Zero technologies, and in particular Hydrogen mixes for commercial hot water & heating.


Adveco commercial hot water and heating. Speak to Adveco about tackling global warming through efficient, low-carbon commercial hot water and heating systems (For schools, hospitals and care homes too!)

Call us on 01252 551 540 or see our other contact details.