Posts

New Building Regulations to come into force in June 2022

Under new building regulations, CO2 emissions from new commercial buildings, including offices and shops, must be reduced by 27% under new rules announced by the government to help the country move towards net zero.

In a government statement, which identified that heating and powering buildings accounts for 40% of the UK’s total energy use, the installation of low carbon technology, such as solar panels and heat pumps, was identified as a core opportunity to help cut emissions – “lowering the cost of energy bills and helping deliver the UK’s climate change ambitions.”

All new residential buildings, including care homes, student accommodation and children’s homes, must also be designed to reduce overheating, making sure they are fit for the future and protect the most vulnerable people.

These new Building Regulations, which set the standards in England for the design, construction and alteration of buildings, follow a public consultation and will come into effect from June 2022.

The intent is that the new building regulations will raise standards and will “pave the way for the Future Homes and Buildings Standard in 2025,” which will address making sure new builds are net zero ready, avoiding the need for retrofit.

There will be a six month period before the new regulations come into force on 15 June 2022. Transitional arrangements are in place which means that if a building notice, initial notice, or full plans for building work are submitted to a local authority before 15 June 2022, then provided the building work commences by 15 June 2023, work on that individual building is permitted to continue under the previous standards.

Useful links to the New Building Regulations  

Conservation of Fuel & Power Volume 2: Buildings other than dwellings

Overheating

COP26 – The Impact On Commercial Buildings

COP26 is now well underway with cautious optimism over initial agreements on reducing coal, global methane levels and rates of deforestation. But what does the event mean currently for those focussed on buildings in the commercial sector here in the UK?

Firstly, more than 40 nations representing over 70% of the world’s economy and every region have stated they will commit to ‘turbo-charging’ the uptake of clean technologies by imposing worldwide standards and policies at COP26. The five sectors that the plan will cover at first are steel, road transport, agriculture, hydrogen, and electricity, with the intent of encouraging global private investment in low-carbon technologies. The aim is to draw in trillions of dollars in private finance for cutting emissions, and businesses seeking to export into the EU must reach the same standards, so we can expect this to strongly impact the UK.

The Treasury has also outlined at COP26 new sustainability disclosure requirements (SDR) for large UK businesses. Under these new Treasury rules, financial institutions and companies with shares listed on the London Stock Exchange must come up with net-zero transition plans, which will be published from 2023. These net zero transition plans and sustainability claims must be ‘clearly’ justified to set a science-based ‘gold standard’. The government will set up a Transition Plan Taskforce of industry leaders, academics, regulators and civil society groups. The strategies will need to include targets to reduce greenhouse gas emissions, and steps that firms intend to take to get there. However, the government has admitted there is “not yet a commonly agreed standard for what a good quality transition plan looks like”, and the UK was not “making firm-level net zero commitments mandatory”.

450 firms managing banks, insurers and pension funds controlling 40% of global financial assets – equivalent to £95tn – have though aligned themselves to limit global warming to 1.5C above pre-industrial levels. Such private investment in green technologies over brown investments is vital in the march towards net zero by 2050. An example of this was the announced “Breakthrough Energy Catalyst” programme at COP26, which aims to raise up to $30bn of investments and bring down costs for ‘green’ hydrogen, direct air capture of CO² and long-duration energy storage.

But there still remain unanswered questions over what government support for the commercial sector is going to look like, and when it will materialise?  Non-mandatory regulation changes and dependence on private finance to green economic trajectory in the hope that businesses will decarbonise of their own accord remains questionable, especially outside the realms of big business.

At the start of 2021, there were 5.5 million small businesses that account for 99.9% of the business population (5.6 million businesses) in the UK according to the National Federation of Self Employed & Small Businesses. These companies’ buildings continue to generate a considerable proportion of UK emissions, so further support for them is critical. In the coming week, delegations will try to further raise awareness of the need for greater support if building emissions are to be successfully addressed.

Efforts to achieve large scale decarbonisation of buildings have focussed on new builds and recognising a building’s full lifecycle in terms of its carbon cost. But consider this, 97% of EU buildings are in need of renovation, so tackling existing properties must be addressed, only then can a more holistic carbon plan be put in place to support commercial properties to be more energy-efficient and able to support low carbon hot water and heating. This would not only address issues of embodied and emissive carbon but could help reduce air pollution and contaminants that, according to the World Health Organisation (WHO), contribute to the deaths of 120,000 Europeans a year. This issue is raised in an open letter to those attending COP26 from trade bodies that include the European Heat Pump Association amongst others, calling for action on appropriate air quality, thermal comfort, control and automation systems within buildings.

Read about how Adveco can help support your business to improve the sustainability of its’ buildings through our range of low carbon and renewable hot water applications.

Heat & Buildings Strategy – Commercial Properties

After much delay, the Government this week has published its long-awaited  Heat & Buildings Strategy guide to take the UK towards net zero by 2050. The bulk of the reporting following its release has focused on grants for domestic heat pumps and observation of considerable funding for public sector building projects. But what about the commercial sector? Today we take a deeper dive into the documentation and highlight what this means for those operating commercial buildings.

The Government’s commercial Heat & Buildings element of the  report clearly states the scale of impact commercial and industrial building stock has on the environment, with around 1.5 million commercial and industrial buildings accounting for “around one-third of UK emissions from the total building stock.” The report states that reducing carbon emissions from these buildings will therefore be key to:

  • Meeting the 2017 Clean Growth Strategy ambition to enable businesses to reduce energy use by at least 20% by 2030, which would save businesses £6 billion per year on energy bills
  • Achieving our Nationally Determined Contribution of a 68% reduction in greenhouse gas emissions (compared to 1990 levels) by 2030
  • Meeting the Government’s carbon budgets
  • Delivering Net Zero by 2050

The demands are clear then, but how is this to be achieved?

Regulating For Intensive Energy Use

The impetus for commercial organisations, as set out by the strategy, is the substantial savings on energy bills, and the creation of safer and healthier working environments. The provision of safer and healthier workplaces should already be enshrined in corporate policy, and reducing operational costs is clearly logical, but it is safe to say that current generation low carbon technology and direct electric, certainly when it comes to domestic hot water (DHW) provision is more expensive than gas-based systems. So, the onus is really going to be one of corporate social responsibility in the near term.

The strategy report does recognise the complexity of the sector, pointing out the huge variety across the commercial and industrial building stock in terms of business size, building size (by floor area), use, and tenure

The policy package laid out therefore aims to avoid a “one-size-fits-all approach.” These policies, unlike previous grant packages, will instead be based upon regulatory frameworks “tailored to the size of the building and the businesses operating in that building, function and energy use of commercial and industrial buildings.”

Large Commercial buildings

The report identifies commercial and industrial buildings (above 1,000m²) as the most intensive users of energy commercially, accounting for 64% of the energy consumed by non-domestic buildings in England and Wales, despite only accounting for around 7% of the stock. The government is proposing to introduce a mandatory regulatory requirement for these buildings to obtain a performance-based energy rating based on measured energy data. This will ensure building users are aware of their energy use and where they are on their trajectory to becoming a Net Zero compatible building.

The process to decarbonise heat sources needs to happen through the 2020s. As such, this performance-based framework will work alongside proposals to prohibit new fossil fuel installations in large commercial and industrial buildings which are not connected to the gas grid.

If your business operates in a building over 1,000m2, the Government’s proposed performance-based energy rating will recognise measured reductions in actual energy use and carbon emissions. Accurate metering of usage and data assessment is going to become a necessity if all the factors influencing building performance are to be understood. The strategy believes this approach will help “optimise existing services and systems, drive behavioural changes, and see installations of improved equipment or investment in the building’s fabric efficiency or low-carbon heat.” The proposal would require building owners and tenants to obtain and publicly disclose a rating on an annual basis.

The strategy paper proposes a phased roll-out, starting with commercial offices in England and Wales. The government’s proposal is to use the performance-based approach to set sector-by-sector energy reduction targets which will be in line with the reductions required to meet Government carbon budgets.

These mandated regulations are said to “recognise and reward” actual improvements in energy and carbon performance for the first time.  How businesses will be rewarded, beyond suggested energy savings remains to be seen. Mandated annual publication of investment in energy reduction will almost certainly be used by third-party organisations with climate change manifestos to hold businesses to account in a very public forum.

Evolving The Energy Savings Opportunity Scheme

The strategy document also highlighted the UK-wide Energy Savings Opportunity Scheme (ESOS), which currently requires large businesses to measure their total energy consumption every four years. This process requires an audit covering energy use from buildings, transport and industrial processes. ESOS recommends practicable and cost-effective energy efficiency measures for saving energy in an organisation’s buildings.

A consultation on ESOS has just closed, with the intent of increasing the number of participants that take action to reduce energy use. Considerations for lowering the threshold for ESOS audit to smaller businesses are being considered, but that is likely to be a post-2023 decision for the 2027 iteration of ESOS. That would address loopholes in the system, with larger organisations arranging building stock under separate small businesses, such as care homes, enabling them to currently avoid ESOS audit.

Those auditing and being audited for ESOS (public sector organisations be exempt) have pointed out the current lack of Net Zero commitment in the current version of ESOS, with 5-10% using the ISO50001 instead. So greater consistency is required moving forward. The concern is that large businesses are not doing all they can at the moment, and are not taking the recommended changes ESOS provides forward, even though they clearly show savings for the business.

ESOS splits peoples’ views, it either being an obligation or an opportunity. The government’s heating and buildings strategy is to use ESOS to increase the carbon and cost savings by extending the number and scope of recommendations taken up by participants. These new, stronger standards, which many hope will deliver greater consistency of audit and streamline carbon reporting would be introduced by 2022 for reporting in 2023. To be successful ESOS needs to demonstrate that the energy efficiency recommendations to businesses do translate to the cost savings the Government is suggesting in the Heat & Buildings strategy. Otherwise, the system threatens to become a burden to commercial organisations.

Smaller Commercial Businesses & Buildings

With smaller commercial and industrial organisations using far less energy per building (17% of all the energy used by commercial and industrial buildings in England and Wales), the onus falls to building owners and businesses to understand and optimise their energy performance, but currently without same need for government regulation. While SMEs can significantly benefit from improving the energy performance of their buildings by decarbonisation, the strategy on heat and buildings recognises that they may struggle to invest due to high capital costs.

BEIS is considering policy approaches to this segment of the non-domestic building stock, including whether to adopt minimum energy efficiency standards similar to the private-rented sector approach. Consultation on owner-occupied buildings is set to conclude by the end of this year.  Long-dated regulatory targets based on the EPC, which requires building owners to invest in the quality of their building’s fabric and services, will be introduced for the 2020s.

Landlords of privately-rented commercial and industrial buildings need to improve their buildings to EPC band B by 2030. The caveat to this policy is that it applies “where cost-effective” and this has significant implementation issues that need to be addressed if the policy is going to be a success. The Government still needs to confirm the enforcement processes but believes this approach will potentially save businesses around £1 billion per year in energy costs by 2030. An equivalent long-dated regulatory target is being considered for owner-occupied commercial and industrial buildings. Consultation on both aspects is to take place in early 2022.

The Government Heat & Buildings strategy document states that “If you are a small or medium-sized business, we plan to provide support to help your buildings become more energy-efficient and adopt low-carbon heat.” The nature of this support remains unclear, previously the government has made funds available through grants and development schemes. At this time there has been no announcement of any such replacement programmes in the near term for commercial operations.

For advice, application design and supply of low carbon options for commercial hot water please speak to Adveco.  

Tackling Global Warming – Why COP26 Matters

Boris Johnson took to the stage last week to announce we must “grow up” as a species at the UN General Assembly. The UK Prime Minister spoke on how we must look towards greener living for the Glasgow Conference of the Parties (COP) 26 summit. This congregation, it is hoped, will build upon the Paris accord that, in 2015, for the first time saw a singular agreement for tackling global warming and cutting greenhouse-gas emissions.

Why is COP26 So Important?

COP26 will see representation from 200 countries to present plans to cut emissions by 2030 to keep global warming “well below” the Paris established 2°C above pre-industrial levels. The ultimate goal for tackling global warming is to aim for 1.5°C with Net Zero emissions by 2050 to avoid greater climate catastrophe by the end of the century.

Johnson observed that this is our “turning point” to do better and “that means we need to pledge collectively to achieve carbon neutrality – net zero – by the middle of the century.” He expressed clearly the urgency in the actions needed to be taken to, not only, save ourselves but the many species which live on this Earth.

Those countries attending are expected to formally announce their plans for reducing emissions and tackling global warming in the coming weeks prior to the commencement of the summit, with more announcements expected during the two weeks of planned talks.

The US has announced a major investment in green initiatives with an $11.4bn per annum contribution in climate finance and China this week has announced plans to cease construction of overseas coal plants. Though generally welcomed, the latter move currently fails to address the use of domestic coal-fired plants, one of the easiest ways for green gains to be quickly achieved at a national level.

The Real Challenge of “Going Green”

With coal removed, the challenge of tackling global warming really sets in. The UK’s carbon budgets are well known to now be off track, and the Green Alliance has stated current plans will deliver less than a quarter of the cuts needed to meet the UK’s aggressive 2030 climate goal – intended to cut 78% of emissions from a 1990 baseline by 2035. The target also fails to account for emissions created abroad in the process of manufacturing goods bought in the UK. This issue of embedded carbon in the supply chain is a complex and difficult challenge that will no doubt be brought to bear on commercial organisations already facing ESOS audits and SECR reporting, and is why open, large scale support for COP26 from the likes of China is so critical.

Here in the UK, the government’s promise to put effective policies in place has been slow to materialise. Disagreement over the future of gas boilers and wider green funding has held up key announcements that should be delineating much-needed guidance for a commercial sector facing immense change and considerable capital and operational outlay if Net Zero is to be realised.

An End to Coal Power?

There is, however, a cautious sense of progress, with great attention being turned to the meeting in Rome late in October of the G20 nations.  Together these are responsible for 80% of current global emissions. If these nations can agree to cease the use of coal, COP26 has the potential to be one of the most decisive events since Paris if it can lead to a speeding up of the global phasing out of coal power. Then the real work starts. Additional agreements on the reduction of deforestation, a more rapid switch to electric vehicles (EVs) and wider protection from the impact of climatic extremes are all expected to be key objectives.

Johnson declared how these opportunities to become greener are not out of reach as “We have the technology: we have the choice before us.”

Striking a Balance When Heating Commercial Buildings

From the commercial perspective, Adveco is one of the leading proponents of how technology can be best applied when tackling global warming by supporting a more sustainable approach, particularly for the delivery of business-critical hot water. We recognise the importance of excluding fossil fuels from future commercial systems and advocate all-electric systems for new builds. We also understand the implicit costs and difficulties of retrofit and replacement of systems throughout the thousands of legacy commercial buildings that define the UK’s urban landscape. For this reason, we also strongly support the continued use of gas, but within a hybrid approach to provide cost-effective, lower carbon applications that remain future-ready for next-generation Net Zero technologies, and in particular Hydrogen mixes for commercial hot water & heating.


Adveco commercial hot water and heating. Speak to Adveco about tackling global warming through efficient, low-carbon commercial hot water and heating systems (For schools, hospitals and care homes too!)

Call us on 01252 551 540 or see our other contact details.

Finding the Answer to Schools Sustainability

The Government’s drive toward Net Zero and its “green industrial revolution”, last November gave a clear message that publicly funded organisations would be expected to be leading the charge when it came to demonstrating sustainable developments. The Department for Education (DfE) has already increased focus on property-related efficiency, and the expectation is this will only increase if schools sustainability is to be delivered across their estates.

But understanding how a school property’s assets contribute to overall performance, and how individual assets perform against technical criteria for sustainability has never been more challenging for estate managers.

The complex technical issues that surround commercial-grade domestic hot water (DHW) and heating applications within schools demand strategic, real-world understanding. Not only are there physical limitations when it comes to technologies on offer, but there are also considerable variances in capital expense and ongoing operational costs that without doubt contribute considerably to the annual costs of running a school. That is a critical issue for authorities and academies that need to balance the demands of change within often restrictive budgets.

The challenge of meeting schools sustainability goals

For education sites that typically exhibit a large DHW load, there remains a strong argument for employing gas-fired water heating. And, just as electricity is becoming greener, so too can the gaseous fuels when blended with hydrogen and other synthetic fuels. With publicly funded organisations increasingly being mandated to demonstrate clear and real investment in sustainable and low carbon technology schools face a complex, real-world and political challenge.

Far too often, school hot water systems suffer from poor application design where a lack of understanding of different types of hot water system leaves systems oversized to prevent perceived hot water problems. Inefficient and less environmentally friendly, such systems are more costly to build and operate for their entire lifespan. This can be further exacerbated by the complexities of introducing Air Source Heat Pumps (ASHP) – the current clear preference of the Government – and Solar Thermal systems.

With ASHPs offering greater efficiencies in low-temperature systems, the high-temperature demands of domestic hot water (DHW) for school applications can be a challenge. It is recommended to calculate emissions at a working water temperature from the ASHP of 55°C, this is then hot enough to provide realistic levels of preheat for a commercial DHW system. Schools’ applications using heat pumps are going to be complex and, when compared to gas-fired alternatives, are going to have higher up-front and operational costs. Offsetting these additional investments though are new efficiencies and sustainability that reduce CO₂ emissions.

Now is also a good time to reconsider the integration of a solar thermal system as part of the premises. Not only a proven and extremely reliable technology, for the past 15 years solar thermal has offered a clear path to reducing CO₂ emissions for sites that rely on large amounts of hot water.

Solar Thermal provides an effective way to offset the new financial burden that comes from moving from gas to currently far more expensive electricity. A ten-year return on investment becomes very achievable, and, with zero emissions, the undisputed carbon and cost savings make this technology increasingly more viable.

Solar has always been used as a preheat with the coldest water possible to maximise the efficiency and output: this gives maximum free heat with no carbon emissions. But there is also a good case now for using solar thermal with heat pumps and electric if set up as a mid-heating system which can lower both carbon and cost.

A Simple Choice

For the time being, schools looking to decarbonise their systems have a simple choice, use either solar thermal or ASHP to preheat water, and gas or direct electric as after heating. By using preheat you can offset up to 75% of a systems energy demands and thereby actively reduce carbon emissions. All these technologies can be made to work together, but for new builds, the expectation will be to fit a heat pump and direct electric system. For pre-existing systems that use gas then the additional use of solar thermal is recommended. This also has the advantage of retaining gas-based system infrastructure, so the building has the option, at a later date, to evolve its use to green gas alternatives. So if you already use gas on-site do not feel pressured into removing it quite yet.

None of the above is a single, all-encompassing answer for schools seeking to achieve Net Zero, but when used together they can provide reliable, business-critical hot water and heating systems that deliver value for capital investment, exhibit lower ownership costs over their lifetime and will help to meet current sustainability targets. They also provide a clear path for the integration of new technologies, such as high-temperature heat pumps and hydrogen ready appliances which will ultimately help to deliver Net Zero by 2050.

At Adveco, our dedicated application design team provide accurate, bespoke sizing, for both new build and refurbishment projects. Once correctly sized, we can recommend, supply, commission, and service the optimal appliances whether they be gas, electric or a mixed hybrid approach that incorporates solar thermal, heat pumps and heat recovery systems. This is the best way of ensuring schools hot water demands are met in the most cost-effective and sustainable manner.

Read more about how Adveco can help achieve schools sustainability


Adveco commercial hot water and heating. Speak to Adveco about finding the answer to schools sustainability.

Call us on 01252 551 540 or see our alternative contact details.

Green Heat Network Fund Set to Open to Applicants in 2022

The Government has released initial details of its Green Heat Network Fund (GHNF) which will open to applicants in England from April 2022 and is anticipated to run until 2025, incentivising new and existing heat networks to move away from high-carbon sources.

With decarbonising heat set as a key part of the Government’s heat and buildings strategy, the new fund is intended to replace the existing Heat Networks Investment Project (HNIP) that has been available since 2018.

The £270 million GHNF will only support low-carbon technologies such as heat pumps, solar and heat recovery in the rollout of the next generation of heat networks. The intent is to help cut carbon emissions from domestic and commercial building heating – which accounts for 21% of the UK total – making it one of the country’s largest carbon emissions sources.

Heat networks, supplying heat to buildings from a central source, are intended to provide large-scale renewable and recovered heat. The GHNF will only support applications if they include low-carbon heat-generating technologies, such as heat pumps and waste heat with the aim of incentivising and kick-starting the demand for heat pumps as part of a wider mix of low-carbon heating options.

Although heat networks currently meet approximately 2% of the overall UK demand for heating, the independent Committee on Climate Change (CCC) has estimated that, with continued support, they could provide 18% by 2050.

The Green Heat Network Fund is expected to fund the delivery of an estimated 10.3Mt of total carbon savings by 2050.

The responses to the GHNF can be read here.


Green Heat Network Fund (GHNF) set to open up in 2022 - Adveco. Adveco provide expertise in and supply low-carbon commercial hot water and heating systems.

Call us on 01252 551 540 or for international offices see our contact page.

What you Need to Know About Net Zero Now

What is “Net Zero”?

With greenhouse gases predicted to reach record highs by 2023 and no sign of slowing, the warnings of the impact of global warming and climate crisis are increasingly becoming apparent to all.  As UN nations converge to address the fundamental issues of climate change, it has become a “front and centre” issue for UK businesses.

In 2008 the UK Government introduced the Climate Change Act legislating for change to reduce the UK’s greenhouse gas emissions by 80% by 2050 and then in 2019, increased the commitment to a 100% reduction which has come to be known as “Net Zero”.

“Net Zero” means that any emissions are balanced by absorbing an equivalent amount from the atmosphere. The Government’s current aggressive response is to drive positive movement across every sector to meet these goals, with a focus on domestic, commercial, transport, agriculture, and industrial usage across the UK.

The effects of Greenhouse gases

As we draw closer to 2023, the effects of global warming are undeniably present, with prior predictions becoming reality — loss of sea ice, accelerated sea level rise, and extremes of weather with heavier rainfall and flooding, plus longer, more intense heat waves leading to drought and wildfires.

The world was amazed by the effects of COVID-19 lockdowns on the environment as the global pause rapidly led to positive improvements, surprising even scientists at how we can truly meet our 0% emissions goals and begin to save our planet by 2050.

How can we meet these goals?

The possibilities of making these goals achievable are very high, and we can all make the smaller changes necessary to do so. However, change for the commercial sector comes with added complexity but also greater rewards. Heating and hot water have long been recognised as key contributors to emissions from across the built environment. They of course are also rightly regarded as business-critical services.  Decreasing the use of fossil fuels to meet the “Net Zero” goal seems obvious, and “simply” changing to a more sustainable energy system can considerably reduce emissions. But there are other key business considerations to take into consideration, with everything from running costs to the capital investment required to modernise both building fabric and systems high on the agenda. Building regulations also play a major role in decision making, and there remains considerable confusion over what “green” technologies should be adopted and when…

Our name is derived from “Advantage Eco”, so it is fair to assume we firmly believe in the need for decarbonisation and the drive to attain Net Zero across the commercial environment before the 2050 deadline. That said, we are also 50-year adherents of the value of deploying gas in commercial hot water applications. This is because of the necessary high temperatures required for safe operation and the cost-effective operation it offers businesses. Like the rest of the UK’s gas-based service market, we have high hopes for the eventual introduction of green hydrogen-based alternatives to fossil gas, with potentially a much lower impact on existing infrastructure and simpler, more cost-effective like for like appliance replacement.

But we also recognize the limitations of a hydrogen-centric viewpoint, not least in terms of achieving national distribution on the scale currently expected by gas users. So, there must be real-world alternatives in play now if achieving Net Zero is going to become a commercial reality. From the proven capabilities of solar thermal systems supporting either gas or direct electric to low carbon air to waterside heat pumps and direct electric heating, there are clear paths of evolution open to organisations seeking to move onto the path to Net Zero. Our experience as a specialist creator of commercial hot water systems can help you as an organisation redefine the way your buildings consume energy and reduce your generation of harmful emissions without impacting critical offerings that define daily operation and the comfort and safety of staff and customers alike.


Talk to Adveco today about how our team can help design hot water and heating applications that remain cost-effective to build and operate for a better future.

Call our head office on 01252 551 540 or via our other contact channels.

Government Commits to Kick Starting the UK’s Hydrogen Economy by 2030

As the countdown to COP26 continues, hydrogen is an area where the UK is aiming to lead by example with the publication of the Government’s Hydrogen Strategy. Starting the process now is necessary if the Government’s 5GW production ambition by 2030 is to be attained, helping to meet the Sixth Carbon Budget and Net Zero commitments. Hydrogen is one of a handful of new, low carbon technologies that will be critical for the UK’s transition to net zero. As part of a decarbonised, renewable energy system, low carbon hydrogen could be a versatile replacement for high-carbon fuels used today.

Launching a public consultation on a preferred hydrogen business model, the presentation from business and energy secretary Kwasi Kwarteng, marks a clear shift in interest, with the Government formally embracing the premise of the technology. This it states has the potential to generate thousands of new jobs, billions of pounds in investment and new export opportunities, as well as crucially reducing the UK’s carbon emissions to deliver Net Zero by 2050.

Prioritising and supporting polluting industries to significantly cut their emissions, as part of this hydrogen strategy report the government announced a £105 million funding package through its Net Zero Innovation Portfolio. £55 million of which will be used as funding to support the development and trials of solutions to switch industry from high to low carbon fuels such as natural gas to clean hydrogen. The investment is intended to help industries to develop low carbon alternatives for industrial fuels, including hydrogen, which will be key to meeting climate commitments.

The strategy outlines plans and investments to meet the ambition for 5GW of low carbon hydrogen production capacity by 2030 – the equivalent of replacing natural gas in powering around 3 million UK homes each year as well as powering transport and businesses, particularly heavy industry.  Concerns have been raised though, that the 5GW target is not ambitious enough, proving insufficient for hydrogen development to become a cornerstone of both our energy policy and the transition to Net Zero.

With government analysis suggesting that 20-35% of the UK’s energy consumption by 2050 could be hydrogen-based, this new energy source could be critical to meet Net Zero emissions targets by 2050 and cutting emissions by 78% by 2035 – a view shared by the UK’s independent Climate Change Committee.

By 2030, hydrogen could play an important role in decarbonising polluting, energy-intensive industries by helping them move away from fossil fuels. The envisioned low-carbon hydrogen economy could deliver emissions savings equivalent to the carbon captured by 700 million trees by 2032.

Kwasi Kwarteng, business & energy secretary, said;

“With the potential to provide a third of the UK’s energy in the future, this home-grown clean energy source has the potential to transform the way we power our lives and will be essential to tackling climate change and reaching Net Zero.”

The report also stated that expectations for the UK-wide hydrogen economy may see its worth bloom from £900 million by 2030, potentially rising up to £13 billion by 2050.

To achieve this requires the overcoming of the cost gap between low carbon hydrogen and fossil fuels, which remains a stumbling block for many commercial projects, especially those based around refurbishment. To aid a fall in costs of low-carbon alternatives the government is consulting on the creation of a £240 million Net Zero Hydrogen Fund, which aims to support the commercial deployment of new low carbon hydrogen production plants across the UK.

Other measures included a “twin track” approach to supporting multiple technologies including ‘green’ electrolytic and ‘blue’ carbon capture-enabled hydrogen production. Though some question the approach, with investment in “blue” hydrogen, arguing this will lock the UK into a fuel import strategy, that by design cannot be a Net Zero solution.

Plans are also in place for developing a UK standard for low carbon hydrogen to ensure Net Zero consistency of production and usage.

A core deliverable will also be the review of necessary network and storage infrastructure, which will  assess the safety, technical feasibility, and cost-effectiveness of mixing 20% hydrogen into the existing gas supply. Doing so could deliver a 7% emissions reduction on natural gas.

The UK government also reported that it is working with the Health and Safety Executive and energy regulator Ofgem to support industry to conduct hydrogen heating trials. These trials along with the results of a wider research and development testing programme will inform a UK government decision in 2026 on the role of hydrogen in decarbonising heat. If a positive case is established, by 2035 hydrogen could be playing a significant role in heating businesses to help reduce carbon emissions from the UK’s heating system and tackle climate change.

“16 successful projects have been instrumental in securing the first industrial demonstration of a wide range of innovative technologies, with the future potential to deliver up to 10 million tonnes of cumulative carbon savings over 10 years,”

commented associate director for the Carbon Trust, Paul Huggins.

The scale of the challenge is clear: with almost no low carbon production of hydrogen in the UK or globally today. Meeting the stated 2030 ambitions and delivering decarbonisation and economic benefits from hydrogen requires rapid and significant upscaling this decade in the face of considerable challenges from existing infrastructure and a long-established built environment that was never conceived with Net Zero in mind. This Hydrogen Strategy is one of a series the UK government is publishing ahead of the UN Climate Summit COP26 taking place in Glasgow this November, and we await the Heat and Buildings and Net Zero Strategies in particular which are set to also be published this year. Further detail on the government’s production strategy for hydrogen alongside a hydrogen sector development action plan are set to be published in 2022.

Read the full Hydrogen Strategy document

Building Regulations for Commercial Hot Water

Committed to raising the energy performance of buildings, the government has now concluded the second of a two-stage consultation on the Building Regulations (Conservation of fuel and power) for England & Wales. This consultation proposes changes to Part L to provide a pathway to highly efficient non-domestic buildings which are zero carbon ready, better for the environment and fit for the future.

These new standards are due to be released in 2025 but will drive interim measures over the next four years for non-domestic buildings as outlined in the Building Regulations: Approved Documents L and F.

These measures outline the expected move away from fossil fuels to low carbon technology for heating and domestic hot water (DHW) and set a more rapid timeline. There is no doubt these new measures will ultimately represent a seismic shift in thinking when it comes to commercial hot water and heating applications, but a buffer has been built in to allow for the development of systems that are necessarily more complex than would be seen in domestic settings. This brings considerable opportunities for developers and specifiers willing to consider both existing and new technologies in order to deliver compliant applications in the next five years.

Whilst a fabric first approach is encouraged, low carbon technologies are being emphasised. This means heat pumps for the broad majority of DHW applications where there is a low heat demand. For commercial properties where there is typically a high heat demand, gas is still allowed while the industry works to develop suitable alternatives.

Hot Water Systems Under Part L For Non-Domestic Buildings

For our current purposes, while we will focus our attention on the provision of DHW for new build non-residential projects. Before we cover that, it is worth noting some of the general requirements for the wider heating systems as these must still be adhered to as part of the overall thermal efficiency of a DHW system.

Each new fixed building service, whether in a new or existing building, must meet the legislated values set out for efficiency. Replacement fixed services must be at least as efficient, either using the same or a different fuel as the service being replaced with matching or preferably better seasonal efficiency.

If moving over to a new fuel system, such as oil or LPG to natural gas, it should not produce more CO2 emissions nor more primary energy per kWh of heat than the appliance being replaced. If ageing renewables such as wind or solar are being replaced the electrical output must be at least that of the original installation, except where it can be demonstrated that a smaller system would be more appropriate or effective. And if work extends or provides new fixed building services energy meters will need to be installed.

When specifying a DHW system, sizing should be based on the anticipated demand of the building (based on BS EN 12831-3). The regulations demand systems not be “significantly oversized,” but we would argue any oversizing will have a negative impact on the efficiency and operational costs of a DHW system. So accurate sizing is critical in terms of delivering an optimal thermal efficiency assessment. That assessment will include the heat generator and any integral storage vessel but will exclude all secondary pipework, fans, pumps, diverter valves, solenoids, actuator and supplementary storage vessels from the calculations.

As a guide the minimum thermal efficiencies for natural gas-based DHW systems, based on gross seasonal efficiency of the heat generator are:

91% Direct fired for a new building with >30kW output*
91% Direct fired for a new building with <30kW output*
91% Boiler efficiency for indirect-fired systems in new & existing buildings
100% assumed Electrically heated new & existing buildings

Adveco carries of range of direct-fired condensing glass-lined water heaters such as the AO Smith BFC Cyclone (97% efficient) and Innovo (98% efficient), as well as an expanding range of stainless steel boilers and water heaters, such as the MD/AD which leverage advanced burner control to drive efficiency even higher (106%). This helps guarantee regulations are met and provides a safety net should regulations tighten in the future.

As with the broader regulations relating to space heating, controls form a necessary element of the new Part L regulations for combustion heated DHW systems. These all must incorporate timer control (independent of space heating circuits) and electronic temperature control.

Additionally, regulations call for fully pumped circulation where compatible with the heat generator for primary hot water circuits. Automatic thermostatic control to shut off the burner/primary heat supply when the desired water temperature is reached, and primary flow if the system temperature is too high for all direct-fired circulator systems, direct-fired storage systems and indirect-fired systems. Direct-fired continuous flow systems should include a heat exchanger flow sensor to control outlet temperatures and detect insufficient flow with burner/heat input shut off. A high limit thermostat is also required to shut off the primary flow if the system temperature is too high.

Point-of-use, local and centralised domestic hot water systems should have automatic thermostatic control to interrupt the electrical supply when the setpoint storage temperature is reached or system temperature gets too high. If there is an over-temperature trip manual reset should be possible.

Local and centralised DHW systems should have both a 7-day time control and the facility to boost the temperature by using an immersion heater in the cylinder.

Instantaneous water heaters should include a flow sensor to control the rate of flow through the heat exchanger. If the sensor detects insufficient flow, it should shut off the electrical input. Plus, a high limit thermostat is required to shut off the primary flow if the system temperature is too high.

Alongside gas, solar thermal is likely to be applied in the notional building unless heat pumps meet 100% of the actual building’s demand. Solar has been used in calculations in the past to overcome the poor fabric performance of a building. But, given the broad majority of heat pumps are currently used for preheat on commercial DHW applications, at most offsetting 70% of the energy demanded, solar thermal has a valid role to play and it’s a proven sustainable technology. Our expectations are for commercial DHW systems to continue in a familiar manner for the near to mid-term, with gas appliances used to provide cost-effective supply, especially during grid peak hours. Heat pumps and/or solar thermal will be deployed to provide preheat to that system.  As efficiencies improve and higher water temperature (more than 60°C) are achieved through heat pumps we see gas appliances slowly being phased out unless they can be replaced with green gas (hydrogen) alternatives. This naturally leads to the provisioning of hybrid systems for the coming decade, optimising a mix of current technologies that address the latest regulations, reduce emissions and crucially deliver value for money with lower operational costs.

One final observation on the implication for the specification and installation of commercial DHW relates to completion requirements. Part L tightens the commissioning requirements to reduce the gaps in performance over design and is intended to deliver improved project handover with accurate energy usage predictions. As a result, we can expect to see revisions of commissioning processes across the industry to help streamline delivery and speed up handover, crucial if government roll-out targets for low carbon technologies to achieve Net Zero by 2050 are to be met and superseded by commercial organisations.

Sources

https://www.gov.uk/government/publications/building-regulations-approved-documents-l-f-and-overheating-consultation-version

* Product standard BS EN 15502-2-1:2012 for gas-fired boilers and appliances of a nominal heat input not exceeding 1000 kW / BS EN 89 gas-fired storage water heaters for the production of DHW

UK Needs to Cut Emissions by 78% by 2035 to Meet Net-zero

Under the original Climate Change Act, the UK pledged to cut net emissions by 80% by 2050. Now, it will need to deliver a 78% reduction by 2035 if it is to meet its long-term net-zero commitment. That is according to the Climate Change Committee (CCC), which has published its Sixth Carbon Budget for the period between 2033 and 2037.

The CCC described the budget as the toughest yet with chief executive Chris Stark saying that the UK will need to decarbonise at a faster pace in the next 30 years if the net-zero target is to be met. Stark explained that the Committee has deliberately opted to ‘front-load’ decarbonisation – more will need to happen in the 2020s and the earlier half of the Sixth Carbon Budget period than in the latter half and the 2040s. Heat, and the broader decarbonisation of buildings, is one of the major priorities identified by the CCC which has based its calculations on a scenario in which 40% of the emissions reductions needed will be delivered using pure-technology solutions.

The new recommendations will see heat supply drastically transformed from its current reliance on natural gas if the country is to decarbonise all aspects of the UK’s infrastructure and economy. The budget has set a mandate for fossil fuel boiler installations to end across the UK entirely from 2033, with fossil fuels phased-out from heating in public buildings by 2025 and in commercial buildings by the following year. It added that these stricter targets to phase out higher-carbon technologies in public buildings would also support a government aim of realising a 50% reduction in emissions by 2032. The 2033 date has been set to take account of the typical 15-year turnover of boiler stock, while also allowing for the scaling-up of supply chains to deploy heat pumps at a mass scale.

The recommendations aim for 37 per cent of public and commercial heat demand to be met by lower-carbon sources as of 2030.  According to the CCC, heat pumps should cater for 65% of the predicted need, 32% of heat should be provided by district heating systems, whether low or high-temperature supply, with a further 3% from biomass by the end of the current decade. By 2050, CCC estimates that 52% of heat demand should be met by heat pumps, 42% from district heat, with hydrogen boilers covering the remaining 5% of national demand.

One caveat, however, was that since the dates operate alongside the deployment of low-carbon heat networks and planned regional rollouts of hydrogen conversion of the gas grid, the phase-out outlined may not apply in any areas designated for these alternatives. This makes a nod to a net-zero that derives balance between pure hydrogen systems and electrification, both delivering decarbonisation of heating. It also highlights the danger of supporting one technology and ignoring another when the pace of development is so much steeper and will continue to be so as we move towards 2050. To this end, the CCC is using what it describes as a ‘balanced pathway’ scenario upon which to base its calculations and that its delivery will require ‘systems change’ and a ‘whole economy approach’ to decisively meet the UK’s legal target of fully eliminating and offsetting carbon emissions by 2050.  Under this ‘decisive’ decarbonisation plan, the CCC has warned that a sizable majority of change must be made within 15 years.


Adveco.Talk to Adveco about how we can help you create more sustainable heating and hot water applications for your buildings.