Tag Archive for: Nox

Adveco AD Wall-Mounted Water Heaters For Commercial Properties

  • A range of three compact commercial semi-instantaneous gas condensing water heaters
  • Perfect for applications requiring direct contact with soft and softened water
  • Compact and smart for no-nonsense installation and maintenance

Commercial hot water specialist Adveco, announces the Adveco AD range of high-efficiency condensing gas-fired wall-mounted water heaters. Designed to provide a compact, high capacity and reliable method for delivering instantaneous hot water to a building, the new range consists of three models, the AD16 (27kW rated heat output), AD22 (33 kW) and AD37 (61 kW).

The AD is a range of ‘A’ class energy-efficient wall-mounted water heaters, with a net efficiency of up to 107% for the production of domestic hot water (DHW). With an efficient pre-mix burner and minimal NOₓ and CO emissions, the AD range is an eco-friendly way to serve a DHW system. Featuring a high 1:8 modulation ratio, wall-mounted ADs ensure maximum efficiency even during periods of low demand.

The wall-mounted water heater features a single high-quality patented heat exchanger constructed from a continuous, non-welded run of  AISI 316Ti titanium-stabi­lised stainless steel, providing exceptional construction strength and corrosion resistance. The brand-exclusive three-pass design features large bore, circular tube cross-sections that reduce the collection of debris.

Bill Sinclair, technical director, Adveco said, “For property renovation where space is at a premium or when existing gas appliances need modernising, the AD wall-mounted water heaters range delivers highly efficient operation in a compact form factor. The titanium-stabilised stainless-steel construction of the AD’s heat exchangers is also the perfect response to counter the concerns of corrosion in soft or softened water applications.”

Also included is an inbuilt controller with an LCD display that ensures full temperature control and a maintenance self-check of primary components and functions.

Additional Information

  • Compact wall-hung arrangement
  • High-efficiency pre-mix burner provides a large modulation range
  • Ultra-low NOₓ emissions at 16-29 mg/kWh
  • Available using natural gas or LPG
  • Supports standard concentric or parallel flue systems using an adaptor for low-cost 80/125 mm diameter PP available on request
  • Integrated run/fault signal for connection to BMS

Adveco ADplus Instantaneous Commercial Water Heaters

  • A range of three compact floor-standing commercial instantaneous gas-fired condensing water heaters with built-in storage tank
  • Perfect for all water qualities with a 5-year warranty on burner and heat exchangers

Commercial hot water specialist Adveco, announces the Adveco ADplus range of high-power gas-fired condensing water heaters featuring an integrated 120-litre stainless steel water storage tank for instantaneous continuous and on-demand domestic hot water (DHW). The ADplus is available in three variants – 70 kW, 115 kW and 140 kW rated heat output.

“Designed to provide a compact, high capacity and reliable method for delivering instantaneous hot water to a commercial building, ADplus is a tough all-rounder,” said Bill Sinclair, technical director, Adveco. “It is perfect for a wide range of applications – from small instant demands to large-scale continuous DHW needs. With minimal NOX and CO emissions, the ADplus range is an eco-friendly way to serve your building’s DHW system. The rugged construction, supported by Adveco’s in-house warranty engineers, provides real peace of mind for your investment.”

The 115 kW and 140 kW ADplus variants offer two high-quality heat exchangers. Constructed from corrosive-resistant continuous run titanium-stabilised stainless steel, these provide balanced highly efficient operation and built-in redundancy. Heat is provided by the patented Fecralloy premix burner fed by a consistent balanced air/gas ratio at each point of turndown. The high modulation ratio results in high combustion efficiency with ultra-low NOX and CO emissions. A built-in flue back preventer on the combustion circuit prevents possible flue gas recirculation between different exchangers.

The tough, stainless steel 120-litre storage tank is provided with electronic anodic protection and high-quality polyurethane thermal insulation. This enables the ADplus to serve as a semi-storage system, providing always available and instantaneous supply with quick recovery times for continuous provision of DHW. For on-demand needs, ADplus heats what is necessary, with no ignition for smaller withdrawals providing considerable energy savings. When heat is required, the condensing technology provides up to 30% savings in fuel consumption. To reduce acidity build-up caused by the condensing process, the ADplus is equipped with a condensate acidity neutraliser, specifically sized to restore tolerable pH values. With the anti-corrosive construction, ADplus can be used with soft and softened water. For harder water, the recirculating pump regulates the correct water flow according to inlet water hardness helping to prevent the formation of limescale on the heat exchanger surface, ensuring high performance throughout its life cycle.

The extremely compact Adveco ADplus is designed to pass through a standard 65cm wide door for trouble-free installation and offers front access to all inner components for quick, easy maintenance. The integrated cascade controller supports full temperature control and self-check maintenance functions for up to 8 units. The controller accommodates 0-10 input, MODBUS communication, and alarm output for seamless BMS integration.

Additional Information

  • High capacity DHW production
  • Compact floor-standing arrangement
  • High-efficiency pre-mix burner with a five-year warranty
  • Extremely high-quality AISI 316Ti heat exchangers with a five-year warranty
  • Ultra-low NOX emissions, class 6 appliance at 27 mg/kWh
  • CO emissions 19ppm
  • High maximum run pressure up to 11 bar
  • Flue gas non-return valve for overpressure cascade flue systems
  • Standard flue systems using low-cost 110mm diameter PP
  • Available using natural gas or LPG

Read more about the Adveco ADplus instantaneous commercial water heater range 

NOx On Effect

A major contributing factor to poor air quality, nitrogen oxides are a group of gases that are mainly formed during the combustion of fossil fuels. The dominant portion of these gases is nitric oxide (NO) which in turn can react with other gases in the atmosphere to form nitrogen dioxide (NO) the most toxicologically significant of the nitrogen oxides.  These reactions take place very quickly and are reversible, so the two gases are referred to together as NOx. Short-term exposure to concentrations of NO can cause lung irritation and respiratory infections, but medical studies have also linked the gas to cancer, asthma, strokes, and heart disease. In addition, NOx can cause changes to the environment, so consideration should be given to its control as part of your organisation’s sustainability activities.

Typically, a by-product of the combustion of hydrocarbon fuels, it is especially problematic in city centres due to idling traffic. In large parts of the UK, the atmospheric levels of NO are considerably higher than European legal limits and the Royal College of Physicians believe it directly leads to as many as 40,000 deaths each year with an estimated cost to the country of £20 billion in healthcare and lost working days.

Critically as greater political and legal weight is brought to bear on addressing climate change it is worth remembering that nitrogen oxides also act as precursors for the formation of ozone, which is not only damaging to health but has adverse effects on the environment through oxidative damage to vegetation. Introduction of N to the environment both directly as a gas and in precipitation can also change soil chemistry and affect biodiversity.

This has led to widespread recognition that more needs to be done to address the issue of NOx, from transport to energy production, distribution, and consumption in buildings.

Traditional energy generation by coal, gas and oil-fired power stations comes with several issues, including being NOx heavy. It, therefore, became popular to look at the alternatives: renewables which help with both carbon and NOx emissions. As such, low carbon electricity’s share of generation has risen delivering a major shift away from generation in large power stations. Since 1990, wider industrial emissions of nitrogen oxides to air have reduced by 74%, although estimates of projected emissions to 2030 suggest further action is required if we are to meet government emission reduction targets. These industrial reductions mean that most of a city’s current air pollution and NOₓ now arise from road traffic and buildings.

The most recent published annual air quality assessment providing data from 2010 until 2019, shows the UK was in compliance with commitments to current emission ceilings for nitrogen oxides. However, the UK continues to be non-compliant with the limit value placed on the annual mean NO concentration at several locations in urban areas. At these locations, it has been estimated that up to 80% of the NO concentration originates as NOx emissions from road transport. But buildings still stand as a key potential contributor to the other 20%.

Managing NOx Emissions From Commercial Properties

In 2018, the European Union’s Energy-related Products Directive (ErP) was used to begin phasing out the installation of less efficient equipment across Europe, including the UK. This would be achieved by establishing minimum performance standards for new equipment, with greater focus placed on heating and water heating performance in buildings. The new ErP directive enforcing maximum NOx emissions from boilers and water heaters which were set at 56mg/kWh for gas/liquefied petroleum gas (LPG) and 120mg/kWh for oil-fired products. At the time the EU predicted the new directive would produce a 20% reduction in energy consumption and emissions when replacing older equipment with ErP-compliant products

The drive towards net zero and the reduction of carbon in buildings is helping to further drive down NOx and where new builds are opting for heat pump and direct electric hot water and heating applications gas to the premises is excised. So no gas, no flues, no NOx. Refurbishing existing properties is more complicated, with low-temperature Air Source Heat Pump (ASHP) based systems typically unable to efficiently address demands. Under these scenarios, a combination of solar thermal and gas top-up for water heating is preferable and leaves sites futureproofed for next-generation green gas technologies. Realistically hydrogen grid connectivity is unlikely for the majority of the UK until the mid-2030s at the earliest, so attention needs to be applied to how gas-based systems can be optimised now to reduce emissions to levels even lower than those established under the ErP directive.

To improve combustion efficiency, condensing gas water heaters and boilers operate so that the water vapor in the exhaust – which contains about 464 kJ/kg of latent energy – condenses on the heat exchanger and not in the flue or outside the building. Designed so that the highest efficiency is at the low end of the firing range, condensing boilers typically operate at 94-95% combustion efficiency. Correctly sized and professionally commissioned, a cascade system for larger demands with high-efficiency pre-mix burners provides a high 1:20 modulation ratio. This large modulation range, along with built-in cascade control ensures that efficiencies are maximised no matter the heating load of the building. With the input of the appliance easily altered to closely match the load, the system is better able to derive as much heat out of the exhaust gases as possible.

With a high-efficiency pre-mix Fecralloy burner, such as employed in the Adveco MD & AD product ranges, ideal combustion efficiency can now be achieved of up to 107% (net)/98% (gross) reducing energy costs and producing ultra-low emissions. The low CO (19ppm) and NOx (27mg/kWh) emissions, from a hot water system built around a high efficiency condensing water heater or boiler (Class 6 appliance) easily satisfy the requirements of the current Energy-related Products (ErP) directive.

In the drive to achieve net zero, and control dangerous emissions, there remains a clear need to address legacy ‘dirty’ buildings. Currently ignored in terms of mandated policy or government support, commercial building refurbishment represents a core challenge for the UK’s climate future. Organisations looking to make steps towards a more environmentally friendly built environment may initially reject any fossil fuel-based option, but the reality is modern systems are advantageous both economically and environmentally and they bridge towards more enveloping carbon neutral and renewable options. If your building’s hot water or heating system predates 2018 then there are advantages to be gained from switching to the latest generation of gas-fired water heaters and boilers, if your system is closer to 15 or 20 years old then you really should be giving serious thought to upgrading appliances. The addition of solar thermal preheat is then going to take your system to the next level in terms of cost and carbon reduction into the 2030s and beyond.

TOTEM engine for Combined Heat and Power (CHP).

What is a Micro CHP engine? And How Does CHP work?

Onsite cogeneration of electricity with heat reclaim by Combined Heat and Power, or CHP units, is one of the most effective ways of reducing costs by simultaneously powering and heating a building from a single gas-powered engine.

As gas supply remains on a par with or slightly cheaper than grid-supplied electricity, and because Combined Heat and Power units secure ‘free / waste heat’ as part of that power generation process less gas overall is required for the heating of the building. So there are two opportunities to reduce operational costs.

The micro-CHP form factor that we deploy in the TOTEM series of CHP units was originally conceived and brought to market in the late 1970s. Subsequently, the design has evolved and improved, incorporating the latest engineering practices and expertise from the automotive industry to ensure the design is optimised to meet the real-world needs of a building project.

The TOTEM m-CHP internal combustion engine is a product of the automotive expertise of Fiat Chrysler Automobiles’ (FCA). The continuous development over 50 years, gives the current gas-driven 1.4L Fiat Fire engine an astounding reliability rate of 99.6% over 100,000 units per year.

The Engine Control Unit (ECU), high-efficiency catalytic converter and fine-tuning for the engine’s stationary parameters is provided by Magneti Marelli, a name which will be familiar to fans of Formula One racing. It is the ECU and catalytic converter that which deliver TOTEM’s ultra-low NOₓ and CO emissions. This is particularly important for urban building projects where NOₓ (a combination of NO and NO2) is seen increasingly as a major factor in air pollution which can be extremely harmful to people. As Combined Heat and Power localises energy production, it is critical that the use of the technology addresses and significantly reduces NOₓ generation. NOₓ emissions from a TOTEM unit are less than 40 mg/kWh of electricity output, but once you take the heat output into account, which is considered a waste product, TOTEM becomes effectively NOₓ free.

TOTEM achieves ultra-low emissions rates –  that are less than 10% of most micro-cogeneration units available on the market –  through the close manufacturing relationships, of Fiat, Magneti Marelli, Asja and Adveco which has driven the adoption of micro-CHP in the UK through unique technology and service support. For this work, Adveco has been recently awarded a Frost & Sullivan Technology Innovation Leadership Award for developing commercial micro-CHP in Europe.

TOTEM stands out with its complete, highly compact system in a box configuration, a design-driven by the decision to directly couple the engine to the generator, which is capable of delivering electrical outputs from 10 to 50 kW, and then closely integrate the other components, especially the condensing heat exchangers.

A building’s central heating water is heated directly in two stainless steel shell and tube heat exchangers and a water to water stainless steel plate heat exchanger transferring heat from the engine coolant (used to cool the engine, oil, and generator water jacket) and from the first stage exhaust. By reclaiming heat from every available source, TOTEM micro CHP units achieve a thermal efficiency of 65% or higher depending on the return water temperature. The TOTEM will condensate when the return water temperature is less than 50°C without the need for an additional flue heat exchanger.

Based on today’s fuel costs electricity output from the co-generator will be at a similar cost to electricity from the grid, however for each kWh of electricity generated approximately 2.5 kWh of free, high-grade heat will be recovered. With ultra-low emissions, micro CHP offers a real option, especially when combined in an application that blends renewables to provide a cost-effective and future-proof method for providing the power and heating needs for commercial projects.


Adveco. Commercial Air Source Heat Pumps (ASHP).Discuss your next project with Adveco whether it’s a hydrogen-ready CHP or commercial Air Source Heat Pumps (ASHP).

Call Adveco today on 01252 551 540

Micro-CHP and The Urban Balancing Act.

Micro-CHP and The Urban Balancing Act

Adveco expert Bill Sinclair, Technical Director.Adveco’s Technical Director, Bill Sinclair, discusses balancing concerns over the cost to health from NOx emissions with the advantages of using micro-CHP in urban commercial building projects.

A by-product of the combustion of hydrocarbon fuels, Nitrogen Oxides (NOx) are a major contributing factor to poor air quality, the most toxicologically significant being a combination of nitric oxide (NO) and nitrogen dioxide (NO₂). It can cause lung irritation and respiratory infections as well as being linked to cancer, asthma, strokes, and heart disease. The Royal College of Physicians believes it directly leads to as many as 40,000 deaths each year with an estimated cost of £20 billion to the country in healthcare and lost working days. This has led to widespread recognition that more needs to be done to address NOx emissions with attention more than ever-shifting to encompass the production of emissions from the built environment.

With a greater emphasis on renewables to make our cities more self-sufficient and resilient in terms of meeting energy needs, low carbon electricity’s share of generation has currently risen to a record 50.1% across the UK with (33.4% of which is generated by renewables). But, as old power plants go offline and are replaced by unpredictable supplies like solar and wind, combined heat and power (CHP) becomes increasingly advantageous. Able to reduce a building’s reliance on the grid, yet when demand is high such as when it is cold and dark, provide a more reliable power source, CHP also has the added benefit of providing high-grade heat at lower cost in conditions where a heat pump coefficient of performance falls and the energy cost increases beyond that of gas.

Although all CHP with a catalytic converter is cleaner than the grid, localised NOx emissions from ‘dirty’ cogeneration should be a concern. Where CHP is used to offset condensing boiler run hours, if the CHP is dirtier than the condensing boiler then the local emissions are worsened. Despite air pollution and NOx mainly arising from road traffic – half of the current NO­x pollution in London is attributed to vehicles – emissions from decentralised energy production are now being seen as a contributing factor. It is therefore of great importance that the NOx emissions from new CHP units within built-up areas are lower than condensing boilers if they are to have a positive effect.

Setting a new threshold for emissions

Micro-CHP (Combined Heat and Power) in urban commercial building projects.The 2018 EcoDesign directive sets a NOx emission limit for CHP units at 240mg/kWh. This threshold, despite being approximately equal to emissions that would result from producing heat from a boiler and consuming electricity from conventional power plants, is too lenient. Air quality has been a critical driver in the revisions within the London Plan which now treats CHP with a lot less enthusiasm – although still accepting that there remains a strategic case for CHP systems as long as the NOx emissions are equivalent or lower than those of ultra-low NOx gas boilers.

The cogeneration industry has not been sitting on its laurels, and a new generation of ‘clean’ CHP brings all the advantages of onsite, on-demand cogeneration, and exceeds the London Plan’s expectations of ‘very low levels’ of NOx, meeting Euro 6 standards for emissions. More compact and much cleaner, micro-CHP units (in accordance with EU standards at 50kW or less rated electrical power) are available with far lower emission rates. This is the case for the TOTEM m-CHP, for example, which is independently certified at just 10mg/kWh.

If we compare a CHP meeting the 2018 EcoDesign limit of 240mg/kWh to that of a TOTEM m-CHP, we can demonstrate the real difference in the latest generation of CHP. Using a unit of 20kW electrical output, a gas input of 70kW, in a situation with an average annual run time of 6,500 hours for a standard application such as a hotel or apartment block, the yearly NOX emission from a ’dirty’ CHP will be 109.2kg/year, compared to 4.55kg/year for Adveco’s TOTEM. And remember, this option is also improving local air quality because the m-CHP is used to offset the run hours of a condensing boiler which at emissions over 30 mg/kWh is dirty compared to the CHP.

Hybrid futures

There will always be projects where in certain circumstances m-CHP will have a place and other renewables are closed out due to limitations of either the site or the technology. By the same token, we would never advocate m-CHP for every building. As is so often the case in the commercial world, each project will have its specific requirements, requiring a more bespoke approach to the provision of hot water, heating and power generation.

Increasingly we hear from consultants who are struggling to pass any kind of gas or gas CHP based heating system because of the issues around NOx emissions, despite the advantage of the high-grade heat necessary to meet the needs of commercial projects. Simply opting for heat pumps, providing a lower grade of heat, isn’t a practical alternative. One answer then is to use a combination of two or three technologies to provide a high heat, low cost, low NOx system.

This is particularly relevant to large buildings where a heat pump alone is simply not suitable. These projects need an additional, high-grade source of heat. Now, that essentially takes you to gas, but if the building is big enough, after the heat pump, but before the gas, can sit m-CHP to provide low NOx and very low running costs.

We can also make a case for using Combined Heat and Power in existing buildings which already have gas boilers and do not have the electrical supply needed to utilise a heat pump. Again, it does not make sense to fit just a heat pump. But we do not want to use CHP to offset low-temperature heat pumps, it has to sit after a heat pump, offsetting the gas heater. Such an approach will still offer some carbon savings, definitely cost savings and, if that CHP is a low NOx appliance when compared to the boiler, then we also have NOx saving. At worst such a system is going to be carbon neutral, but cost and NOx effective.

The move towards all-electric in smaller buildings also reopens the door for solar thermal with better payback case and better carbon savings. Used in conjunction with low-temperature commercial Air Source Heat Pumps (ASHPs) in an arrangement to ensure that it offsets the high-grade source, it offers an alternate hybrid approach that does not require CHP. But we believe gas-fired m-CHP will continue to play a necessary role as part of many hybrid systems, achieving effective water temperatures for commercial applications whilst balancing running costs and savings.

As with any project, design what is best for the building. We would never advocate ignoring the risk of increasing air pollution locally with “dirty” CHP systems, so if Combined Heat and Power is the best fit for your project’s needs then it is vital to choose the lowest NOx emitting equipment available. Right now, the Mayor of London is supporting the city’s Cleaner Heat Cashback scheme for SMEs, proposing scrapping of old gas boilers and replacing them with a variety of options including new efficient gas boilers. If we can demonstrate that m-CHP, either standalone or in a hybrid system, can offset condensing boiler run hours and make emissions cleaner then there is surely a place for the technology, even in the centre of our busiest cities.


Adveco. Commercial Air Source Heat Pumps (ASHP).Discuss your next project with Adveco whether it’s a hydrogen-ready CHP or commercial Air Source Heat Pumps (ASHP).

Call Adveco today on 01252 551 540