Tag Archive for: sustainability

Adveco FUSION Named 2022 Heat Pump Awards Finalist

Commercial hot water specialist Adveco has been named as a finalist in the 2022 National ACR & Heat Pump Awards for its FUSION FPH-S range of low carbon, all-electric, packaged hybrid hot water systems

“To be named as a finalist for the second year running is already quite the achievement for the company,” said David O’Sullivan, managing director, Adveco. “The heat pump market is seeing impressive technical leaps as the UK government calls for organisations to attain net zero by 2050. The commercial hot water market presents additional complexities when it comes to servicing application demands with heat pumps. The FUSION system was conceived, designed and built by Adveco to specifically address these challenges, delivering a hybrid water system that optimises efficiency to meet hot water demand, higher temperatures and lowers carbon emissions in line with the latest building regulations.”

FUSION harnesses Adveco’s FPi32 Air Source Heat Pumps (ASHP), a high-pressure A TSH calorifier with electric immersion, controls, and metering to provide a reliable, high-temperature, sustainable and cost-effective system for new commercial build and refurbishment projects.

The physical design, dedicated controls and integrated metering ensure the ASHP preheat, and immersion work seamlessly to deliver the highest operational efficiencies. This enables FUSION to make the greatest gains possible from the heat pump, even when ambient temperature and system demands fluctuate. These gains offset much of the direct electrical energy usually required, delivering 53% carbon emissions saving and helping control the operational costs of providing business-critical hot water.

FUSION is available in 16 pre-specified variants with 6 or 10 kW preheat and 9 or 12 kW electric top-up, with capacities ranging from 200 to 500 litres all rated at 10 BAR for high-pressure applications. Able to meet a range of continuous capacity hot water demands from 257-377 litres/hour makes FUSION highly adaptable for a wide range of commercial buildings.

The National ACR & Heat Pump Awards, hosted by ACR Journal and Heat Pumps Today, will be held in Leeds on June 9 2022.

 

Adveco Launches The GL Family Of Carbon Steel Tanks

Commercial hot water specialist Adveco launches the GL family of low-cost carbon steel storage tanks offer a selection of off-the-shelf vessels for commercial hot water (DHW) projects requiring direct electric heating, buffer storage, indirect heating or preheat.

  • A wide range of low-cost commercial carbon steel storage tanks and calorifiers
  • Direct electric, buffer storage, indirect heating & preheat for hot water applications
  • From 200 litre up to 5000 litre capacity for larger-scale all-electric projects

“Tough enough to deal with water conditions typically encountered across the UK, the new GL family expands options with a versatile choice of vessels with single and double coil variants, as well as no coil and the option for electric immersion to quickly and cost-effectively replace vessels in ageing commercial hot water systems,” said Bill Sinclair, technical director, Adveco.

Adveco GLE

Designed to serve as buffer vessel or electric water heater, the Adveco GLE is available in a range of sizes from 200 to 5000L to support larger all-electric systems. Compatible with a wide choice of direct electric immersion heater options available from Adveco, the GLE supports duty immersions from 3 to 36 kW, as well as secondary supplementary immersions from 3 to 6 kW for additional heating, or as backup to ensure continuity of service from a single unit.

Adveco GLC

Carbon steel calorifiers with a single fixed indirect heating coil at low level are designed to serve as indirect water heaters or preheat vessels. Available in 200 to 3000 litres capacities, GLC can also accept a 180mm 3-36kW electric immersion.

Adveco GLT

GLT carbon steel calorifiers are designed to serve as indirect water heaters. The tanks, also available in 200 to 3000 litres capacities incorporate two fixed indirect heating coils, one each at low and high level, designed for use with two separate heat sources.

To prevent corrosion the tanks are constructed from a carbon steel shell with a high-quality inorganic enamel lining. They are suitable for use in systems with maximum working pressure up to 10 bar and temperatures up to 85°C and include as standard a magnesium sacrificial anode (pre-fitted in 300-1000L variants), and a temperature gauge (pre-fitted in tanks up to 1000L).

The vessels are protected by a tough PVC jacket enclosing a rigid high-density polyurethane foam or removeable polyester fibre insulation, pre-fitted for tanks up to 1000L.

The Adveco GL range of storage tanks carries both WRAS and Kiwa’s KUKreg4 certification of product compliance with the water supply (water fittings) regulations for England, Scotland, and NI.

Supporting Ancillaries from Adveco

  • Electric Immersion Heaters from 3-36 kW (GLE / GLC & GLT 200-500L)
  • E0008/0-95C: Control Thermostat with 0-95°C range
  • E0011: Overheat thermostat
  • MB0001: Destratification pump kit
  • Unvented Kit

Adveco launches the GL family, learn more by visiting the GL product page.

Unlocking The Potential of Hydrogen

For many, unlocking the potential of hydrogen represents a familiar, easier and more cost-effective way to transition to more sustainable heating practices in buildings. It is also increasingly seen as a core shift in the energy trade and critically, in the wake of demands to reduce dependency on Russian oil and gas, the future for regionalisation of energy supply.

In the recent report, Geopolitics of the Energy Transformation, from the International Renewable Energy Agency (IRENA), hydrogen it is estimated will cover up to 12% of global energy use by 2050, with at least two-thirds of total production being green hydrogen (produced with renewable electricity) with the remainder blue hydrogen (derived from natural gas).

Here in the UK, the status of hydrogen remains to be confirmed as part of the government’s push towards attaining net zero by 2050. The Heating and Buildings Strategy published in late 2021 does however begin to give an indication of the growing support for the technologies currently being tested.

The government’s commitment so far extends to the testing and evaluation of the potential of hydrogen as an option for heating workplaces. In partnership with industry, the intent is to “clearly define the evidence needed to make a policy decision about the role hydrogen for heating can play in our future energy system.”

To this end, The Department for Business, Energy and Industrial Strategy (BEIS), supported by Innovate UK and Innovate UK KTN, have launched the Net Zero Hydrogen Fund (NZHF) which was most recently cited in this month’s Energy Security Strategy to focus on unlocking the potential of hydrogen. A funding sum of up to £240m has been made available to explore the development and deployment of low carbon hydrogen production. The funding is intended to de-risk investment and reduce lifetime costs of multiple hydrogen production projects this decade to help ensure a diverse and secure decarbonised energy system that meets the UK government’s stated ambition of 10GW low carbon hydrogen production by 2030, and commitment to reach net zero by 2050.

This investment comes in advance of a declared strategic decision by 2026 on the role of hydrogen in heating buildings. This decision will consider the success of development projects that focus on appliances, such as new gas boilers that can be readily converted to hydrogen (‘hydrogen-ready’) and the testing of conversion of the gas grid. The latter in particular is critical in terms of evaluating the technical and practical feasibility of using hydrogen instead of natural gas for heating. This assessment process is also expected to consider the expected costs, benefits, impacts, and practical delivery implications.

This consultation process will also be a factor in decisions in relation to the future of broader boiler and heating system efficiency and explore the best ways to reduce carbon emissions from our heating systems

According to IRENA, the rise of hydrogen’s potential is linked to the plummeting costs of renewables and electrolysers. This greatly improves the economic attractiveness of ‘green’ hydrogen which also can help deliver on the demands for storage that comes hand-in-hand with greater dependence on wind and photovoltaic (PV) power generation. From this perspective, ‘green’ hydrogen becomes an important technology in the extension of renewable electricity developments.

Although ‘Grey’ hydrogen production, which is solely based on fossil fuels, is expected to be rapidly phased out in the coming decades, ‘Blue’ hydrogen, although also based on fossil fuels, is expected to play a complementary role to ‘Green’ hydrogen, so long as the carbon capture and storage (CCS) is proved viable. As a result, hydrogen and hydrogen-based fuels are now projected to meet a sizeable share of final energy demand in 2050, up from virtually nothing today. To achieve this in the UK, the Heating & Building Strategy report outlines the key processes of consultation required for unlocking the potential of hydrogen beyond 2026.

  • large-scale hydrogen trials: BEIS and Ofgem have liaised with the gas distribution network operators on the conducting of a ‘village’ scale deployment trial by 2025, and a possible town scale conversion project before the end of the decade.
  • Hydrogen blending in the gas grid: to develop the safety case, technical and cost-effectiveness assessments of blending up to 20% hydrogen (by volume) into the existing gas network. This has the potential to deliver up to 7% emissions reductions from the grid. The assessment of indicative cost and value of blending hydrogen is intended to be delivered this Autumn, with the possibility of a policy decision in 2023. This in particular would represent a major first step towards integrating hydrogen in the grid at a potentially national level, but would not require building projects to replace existing natural gas boilers/water heaters.
  • Hydrogen-ready boilers: Consideration will be given to the case for enabling, or requiring, new natural gas boilers to be easily convertible to use hydrogen (‘hydrogen-ready’) by 2026 (in domestic projects). This consultation would also test proposals on the future of broader boiler and heating system efficiency and explore the best ways to reduce carbon emissions from gas heating systems over the next decade. The Heating & Buildings strategy makes clearer the commercial implications where, for the moment, if your business uses gas, then you can upgrade to new gas appliances up until 2035, with hydrogen-ready options extending that window well into the 2040s based on current appliance lifespan.

The local trials and planning, research and development and testing outlined will help develop necessary evidence on the role hydrogen can play in the heating of buildings, enabling strategic decisions to be taken on the role of hydrogen in heating buildings in 2026. This timeframe, and the necessity of its elements, are very important to remember when the media is constantly calling for a decision to be made more rapidly. The implications of a transition to a hydrogen grid are immense, but so are the challenges. It cannot be rushed and it cannot fail if net zero is to be realistically attained, especially across the commercial & public sector built environment.

On the global stage, green hydrogen may strengthen energy independence, security, and resilience by cutting import dependency and price volatility.  However, the raw materials needed for hydrogen remain exposed to shortages and price fluctuations that could negatively affect hydrogen supply chains, cost and revenues. For this reason, hydrogen, if it is green-lit as a core contributor to the UK’s net zero delivery will not do so in isolation. Just as most buildings will currently rely on both gas and electricity, net zero ‘ready’ organisations will most likely have embraced a mixed approach. This will leverage the advantages of air source heat pumps (ASHP), proven solar thermal and natural gas with a hydrogen blend as a redundancy/peak demand back-up through the 2030s and early 40s. Hydrogen ready’’ adoption should be a necessity by the early to mid-2030’s. Then the UK could look forward to full transition to ‘Blue’ then ‘Green’ hydrogen from the late 2030s and throughout the 2040s at a national scale. Regional rollouts will of course redefine these timelines, but, if the policy supports the adoption of hydrogen from 2026, the technology usage path should remain fairly clear for commercial projects looking at unlocking the potential of hydrogen as a part of their corporate drive toward net zero sustainability by 2050.

Prefabricated Hot Water Systems For Schools

Prefabricated Hot Water Systems For Schools Prefabricated hot water systems for schools can drive real value from previously underutilised space as well as address the need to introduce new, more sustainable practices…

With larger class sizes demanding more extensive facilities, the most valuable assets any school can have are its internal spaces to grow, develop and drive advantage. Within the school building, this leads to a balancing act between granting usable, comfortable space for staff and pupils while meeting the demands of a building’s critical operating systems that include hot water and heating.

School plant rooms will vary from purpose-built to jury-rigged spaces used to accommodate heating and hot water systems. Basements are typically repurposed in older buildings, whilst it is not unusual to find them tucked in amongst other rooms creating a mixed-use setting. Education estates need to understand how advantageous it can be to separate such building services and relocate them away from those using the building whilst improving the efficiency of the system for a host of benefits including lower operational costs and reduced emissions.

Simply upgrading to a new boiler or electric water heater can deliver notable efficiency improvements over models from just 10 years ago, and today’s modern appliances pack that into much more compact, space-saving formats. So, you can gain greater capability from a smaller footprint in the plant room, and potentially reclaim a few square meters. But what if you could reclaim the entire plant room?

Refurbishing plant to a new location may sound drastic, but that need not be the case if we apply offsite construction. This enables the creation of modular units or systems that are sized and pre-installed and ready for relatively quick and simple connection once delivered to a site. Depending on the chosen location, such prefabricated plant rooms can be of considerable size and complexity.

Prefabricated Hot Water Systems For Schools

With production work located offsite in a controlled, purpose-made factory environment, the system build gains enhanced quality control with manufacturer assured standards. Importantly for education projects where works windows can be extremely limiting the plant room element of a project can progress at the same time as other groundworks or site installations. This work will also not be affected by any forced downtime on-site, such as from Covid outbreaks, which can quickly become a major issue for a time-sensitive school building project. Without distractions from other typical construction site activities, the plant room work can be rapidly progressed ready for delivery and final fit. Faced with narrow construction windows allowed within the school holidays, a completely new plant room can be craned into position on day of delivery. Without the need for extended plumbing and electrical installation, final connections are simplified and can be completed in a matter of days. This is not only more cost-effective, but it also helps simplify and accelerate final system commissioning.

As well as extending options for refurbishment, this approach also provides greater flexibility when designing new builds. Adveco recently designed and built a complete, prefabricated plant room for a Berkshire school. In this case, hot water and heating demands had increased due to a growing number of pupils, which in turn was limiting the incorporation of large scale plant room space within a new building. The GRP enclosure, which was sited on the new building’s flat roof, incorporated a complete integrated system built around a cascade of condensing boilers with an intelligent control system for optimised performance and continuity of service.

Flat rooftops, commonly used in school building design, are truly ‘dead space’ for most buildings, but they provide a broad opportunity to relocate heating and hot water plant safely and more securely. They are also excellent for positioning hybrid systems that integrate renewable and sustainable technologies.  By locating a packaged air source heat pump (ASHP) based system onto a rooftop, the application gains unimpeded airflow while operating noise becomes almost unnoticeable, preventing any distraction in the classroom.

Flat roofs are also perfect for the installation of solar thermal systems, where a frame is constructed to align the collectors for optimal heat collection and transference to the building’s water system. Location at height is recommended from a system security perspective because vandalism, usually because of hurled missiles, can prove highly expensive to resolve. But perhaps one of the biggest operational threats is to the efficiency of a solar thermal system, which comes in the form of heat loss from long pipe runs between collector and hot water storage. By locating the plant room on the roof, long pipe runs and resultant thermal losses are minimised helping to protect the investment.

With the proliferation of car ownership, it might at first seem unlikely that the staff car park is being underused. But the drive to encourage walking, cycling and car-sharing has had an impact, and developers who have previously pushed for more open parking space are now being challenged to repurpose some of that space. In terms of identifying functional opportunities to better leverage this space, the siting of plant fits the bill. Turing over just one or two car spaces can have a dramatic impact on the capability of heating or hot water system, providing enough square meterage to easily accommodate a mid-sized packaged plant room offering, or the space could be used to locate air source heat pumps (ASHP) that drive system sustainability whilst lowering CO₂ emissions.

Offsite construction is the perfect example of where application design, system prefabrication and expertise in hybrid and renewable technology can help maximise underutilised space on an education project. Prefabricated hot water systems for schools are one of the easiest ways to combine the latest in commercial ASHP technology with high-efficiency direct electric water heaters, or solar thermal with gas-fired appliances to provide reliable high-temperature water in a convenient, packaged system that delivers truly sustainable applications that demand less fuel, reducing emissions and lowering ongoing operational costs. That is a core demand for any education estate manager faced with driving sustainability in buildings within the limits of often tight budgets.

Discover more about packaged plant rooms and sustainable systems for education buildings from Adveco.

Scenarios For Greener Buildings in the UK

Building Back Greener is the government’s campaign to improve the energy performance of buildings, reduce costs, minimise the impacts of transition on the energy system, and make switching to low carbon systems easier in order to reduce emissions and achieve net zero by 2050. Underpinning this process are three illustrative scenarios for greener buildings that reflect different technology mixes that would allow the decarbonisation of heating in buildings. The three scenarios are high hydrogen, high electrification and a dual-energy system scenario.

Today, the importance of driving these scenarios forward has been given greater urgency by the long-awaited report  from the UN’s Intergovernmental Panel on Climate Change (IPCC). To stay under the critical 1.5C threshold, according to the IPCC, means that carbon emissions from everything that we do, buy, use or eat must peak by 2025, and tumble rapidly after that, reaching net-zero by the middle of this century.

To put it in context, the amount of CO2 that the world has emitted in the last decade is the same amount that’s left to us to stay under this key temperature threshold. “I think the report tells us that we’ve reached the now-or-never point of limiting warming to 1.5C,” said IPCC lead author Heleen De Coninck. This is why quickly achieving goals towards net zero by 2050 is so important if we are to curb the worst implications of global warming – heat waves, drought & flooding.

The immediate focus from the government is to achieve Carbon Budget 6 targets, to ensure the UK is on target to achieve net zero, although many already doubt these budgets will be met as simple measures such as closing down coal-fired power stations are replaced by a far more complex mix of options that deliver more incremental steps to reducing carbon emissions. To achieve the level of emissions reductions across the built environment in line with the government’s delivery pathway to 2037, will take an estimated additional public and private investment of approximately £200 billion which will need to be focused upon one or more of the outlined scenarios.

Three Scenarios for Greener Buildings

The high electrification scenario assumes that there is no significant use of hydrogen for heating in buildings. This may be because hydrogen is not proven to be feasible, cost-effective, or preferable as a solution for low carbon heating, or because its deployment has been significantly delayed.

Under such conditions, the choice would be to continue the rapid growth of the heat pump market which the government has already seen as the best low carbon heating option for new buildings or those off the gas grid.  This would mean increasing new installations (domestic and commercial) beyond the currently envisaged minimum of 600,000 per year in 2028 to up to 1.9 million per year from 2035. Currently, the UK sees approximately 35,000 heat pump installations per year, and commercial demands are already outstripping available stocks in the market as a result of raw material and component shortages caused by Covid.

To ensure the extended level of heat pump deployment, further policy would be required to phase out installation of new fossil fuel heating faster while continuing to follow natural replacement cycles. The proposed increased deployment of heat pumps will need to be accompanied by investment in the infrastructure needed to meet increased electricity demand, including the generation of low carbon electricity and additional grid capacity.

If hydrogen proves both feasible and preferable as a method for heating most UK buildings, and decisions taken in 2026 support a path to converting most of the national gas grid to hydrogen then the high hydrogen scenario would take effect. Pilot projects to provide heating for an entire town by the end of the decade would, once successfully implemented, see an accelerated rollout on a national scale. The conversion would likely start by building out from existing hydrogen production and use in industrial clusters, and roll-out would involve switchover on an area-by-area basis in different locations.

Due to the infrastructure and supply chain requirements of a hydrogen conversion the government estimates new heating system installations should be low carbon or hydrogen-ready, meaning ready for a planned future conversion, from 2035, with approximately 30% of existing low carbon buildings to be supplied by hydrogen at that time.

This does mean approximately 53% of buildings with low carbon systems would be reliant on heat pumps and 15% heat networks. This is why the third, and most realistic of the scenarios for greener buildings is one based around a dual-energy system, where both hydrogen and electrification prove feasible and preferable for heating buildings with a widespread demand for hybrid systems that utilise a mix of energy sources.

For example, if all, or most of, the gas grid is converted to low carbon hydrogen, but the costs and benefits of switching to hydrogen versus installing a heat pump are viewed differently by organisations we might see a high switchover to both hydrogen and heat pumps on the gas grid. Based on differing geographical or built environment factors, there may be a partial, but still extensive, conversion of the gas grid to hydrogen. Under this latter scenario, more careful consideration would be required of which parts of the grid would be converted and where responsibility for decisions about the costs and benefits of converting different areas should lie.

While the government claims it remains early days in terms of determining the policy framework that might support this mixed transition, global conditions, both political and environmental, are driving fresh demands on the government to accelerate commitments.  Any scenario in which hydrogen is an available option from the grid will require public policy decisions to enable cost-effective and coordinated investment in infrastructure and supply chains. If the case for converting the network to hydrogen differs strongly from area to area, more preparation may need to take place at a regional or local level.

What does this mean for the commercial sector?

Whichever scenario becomes the one of choice, you can expect greater consultation over new regulatory powers that can be brought to bear on the commercial sector to bring it into alignment with the government’s goals for delivering these scenarios for greener buildings.

Initially expect to see the phasing out of heating appliances that are only capable of burning fossil fuels. This would be consistent with the ambition to phase out the installation of new and replacement natural gas boilers by 2035, and the phasing out of the installation of high-carbon fossil fuel boilers in commercial properties not connected to the gas grid by 2024.

The government’s Energy White Paper has already set a minimum energy efficiency standard of EPC Band B by 2030 for privately rented commercial buildings in England and Wales. And you can expect further consultation on regulating the non-domestic owner-occupied building stock and consideration on whether this should align with the private rented sector minimum energy efficiency standards. There is also an expectation for a response to the 2021 consultation on introducing a performance-based policy framework in large commercial and industrial buildings, with the aim to introduce a pilot scheme sometime in 2022.

Further consultation is expected on the Small Business Energy Efficiency Scheme (SBEES). This scheme aims to remove barriers for SMEs in accessing energy efficiency measures, drive forward better buildings performance and aid SMEs in meeting regulatory standards.

Finally, you can also expect to see a strengthening of the Energy Savings Opportunity Scheme (ESOS), which is a mandatory energy assessment scheme for large businesses’ energy use and opportunities to improve energy efficiency.

What is very clear at this stage is that commercial organisations face a complex technical and regulatory challenge in the coming decades if they are to successfully navigate to a future with decarbonised buildings across their estates.   Consulting with expert providers at the earliest planning stages can pay dividends in the longer term, balancing the use of cost-effective and familiar technology now with new developments in the mid-to-long term. From a business perspective, the advantages of decarbonisation can be valuable in terms of operational savings and corporate social responsibility gains, but higher capital and operational expenditure also need to be considered if realistic steps are to be made. With more than 50 years of experience delivering bespoke commercial hot water and heating applications and deep knowledge of renewable systems,  including both heat pumps and solar thermal, Adveco is perfectly positioned to advise and assist organisations seeking to begin the decarbonisation process now.

Public Sector Decarbonisation Of Hot Water & Heating

Public sector decarbonisation is a core facet of the government’s Heat & Building Strategy, which has been published to outline how the UK can achieve net zero by 2050. By decarbonising public sector buildings, the government aims to demonstrate leadership and to encourage action in other sectors to make a direct contribution to net zero.

With around 40% of UK greenhouse gas emissions being accounted for by heating, cooling, and lighting the built environment, the government has said it is ‘essential that the public sector demonstrate leadership and drive down emissions by using credible and consistent approaches to decarbonise the public sector estate.’ The aim is to reduce direct emissions from public sector buildings by 75% against a 2017 baseline by the end of carbon budget 6.

Addressing decarbonisation within both new construction or refurbishment of existing properties has now become a key deliverable throughout the public sector which will need to be shown to be leading the way in decarbonising UK buildings in the 2020s.

What is the government doing to support the public sector?  

The government’s £1 billion Public Sector Decarbonisation Scheme was initially announced in 2020 to provide funding until this year. Conceived to support the public sector in finding answers to heat decarbonisation additional funding was allocated to make public buildings greener and the second phase of the Public Sector Decarbonisation Scheme was launched last April with an additional £75 million of funding into this year. The government has subsequently committed to investing a further £1425 million for the Public Sector Decarbonisation Scheme between now and 2025. This funding is intended to provide public sector organisations with grants to fund energy efficiency and heat decarbonisation measures and supports the decarbonisation of the public sector in line with the government set net zero targets.

The funding will aim to deliver energy efficiency and heat decarbonisation improvements to organisations such as schools, hospitals and public sector offices, and present an opportunity to build wider support and acceptance for transformation of how the UK heats buildings. The government has stated it is committed to the continuation and extension of the scheme to “ensure that public sector bodies have access to finance to continue decarbonising their estates.”

What does the government expect of the public sector?

The government’s aim is to introduce greater transparency into how the public sector is making practical changes to achieve decarbonisation. At a basic level, the expectation is for “all public sector organisations to be thinking about how they will achieve Net Zero and should be taking steps to start this process now.” As publicly-funded organisations, they should expect to be held accountable to the public by reporting their progress. Through the Greening Government Commitments (GGCs) a framework for reporting against targets to reduce public sector greenhouse gas emissions has already been set in place, and now all public sector organisations will be expected to show leadership by taking steps to reduce direct greenhouse gas emissions. This should include monitoring their energy use and setting targets and plans to reduce emissions over the next five years. Different targets will be appropriate for different organisations, but all public sector organisations are expected to publicly report progress against their plans and targets.

The Heat & Building Strategy specifically calls on public sector organisations to plan to reduce direct emissions from their heating systems by making buildings more efficient. This should be achieved through:

  • improving building insulation
  • switching to low-carbon heating sources when it is time for heating systems to be replaced
  • implementing smart technology
  • installing low-carbon heating in new buildings, which means retrofitting will not be needed

If reporting of public sector emissions on a consistent and coherent basis is not done on a voluntary basis, and, if insufficient progress is made on reducing emissions in the public sector, the government will consider legislation requiring all public sector organisations work toward and report against a legally binding target to reduce their greenhouse gas emissions.

How can Adveco help?

The Heat & Building Strategy accepts that public sector organisations will require new specialist skills and expertise to decarbonise, both through making infrastructure improvements and by better managing operational energy use. As the public sector provides all public services, including education, healthcare, emergency services and social care to name a few, these organisations encompass a large and varied requirement for hot water and heating.

Including everything from showers, washbasins and kitchens, to varied space heating demands,   applications will vary dramatically across each bespoke case, making decisions on decarbonisation all the more complex and difficult without specialist support.

Currently, the government favours air source heat pump (ASHP) based applications for the public sector as the simplest and most cost-effective answer to being greener. But many have queried the expense and relevancy of the technology outside of new build properties. The Government has said it will work with the industry to help meet the goal of reducing ASHP cost, bringing them in line with current fossil fuel options by 2030, ‘with big cost reductions of between a quarter and a half by 2025 expected as the market expands, and technology develops.’

This and the practical benefits of switching to high-efficiency heat pumps to reduce energy consumption, which includes less CO₂ production and lower long-term operational costs, make the technology an important part of the process for achieving carbon-neutral goals on schedule. The high-temperature demands of commercial hot water systems do however curtail the current generation of heat pumps as a singular response, with existing, poorly insulated buildings further reducing efficiencies. For this reason, public sector organisations faced with delivering decarbonisation goals within the proposed next five year period will need to consider more complex hybrid systems, or if on gas, look to solar thermalas a practical way to reduce energy use and decarbonise their buildings.

There are a number of available responses and new lower-carbon technologies are under consideration by the government for further support but knowing what is best for your organisation is not always straightforward. Faced with varied building stock, technology options and fluctuating user demands for hot water and heating consulting with Adveco’s expert sales and engineering staff can help you truly understand those needs and the options best suited to your bespoke situation.

Discover more about Adveco’s renewable systems for decarbonising your building hot water and heating.

Installing commercial heat pumps – what to look for

Adveco’s FPi32 commercial heat pumps range are not only a renewable source of hot water with low running costs but are one of the easiest to fit when it comes to installing commercial heat pumps.

With the government-led push to replace ageing commercial hot water systems with new, more environmentally friendlier technologies, the demands for heat pump based applications is expected to soar in the coming decade. One of the key concerns raised by the HVAC industry is the availability of trained installers capable of working with heat pumps. While the number of commercial installations may be superseded by domestic sites, their complexity means installers will increasingly be in demand. To prevent costly hold-ups, projects incorporating ASHPs should take into account how difficult or easy installation of commercial heat pumps might be.

The FPi32’s compact monobloc design, with a built-in circulation pump and plate heat exchanger, allows for an easy installation for a multitude of work areas. This includes both indoors and outdoors. They can be installed in small unused spaces, mounted on exterior walls or flat roofs of the site. Installed on flat roofs or mounted onto GRP plant rooms.

An FPi32 installation also requires few ancillaries (strainer, expansion vessel and pressure relief valve) to enable its operation as part of a hot water system. This also helps to keep system purchase costs lower as well.

Another advantage of installing commercial heat pumps, such as these compact FPi32 units, is that less construction work and time is needed to fit them. They can be up and running quicker, providing working flows of hot water sooner than other units currently in the commercial market. They can then efficiently and effectively sustain the necessary working temperature of 50°C required to provide preheat as part of a hybrid all-electric system in new build projects.

Ease of installation goes hand in hand with significantly reduced maintenance costs.

The design of these FPi32 units incorporates effective frost protection, enhancing the option to install outdoors. The FPi32 range is equipped with a 1.5-metre ‘trace heating cable’ as standard, which is there to protect the pipework between the heat pump and the building from frost conditions. This ‘trace heating’ via the mechanical thermostat is always available when the heat pump has power. This guarantees protection against frosty conditions when needed, regardless of whether the heat pump is operating.

This monobloc design simply requires regular cleaning of the coil and water filter in terms of regular maintenance. The internal parts are easily accessible for all maintenance needs. A refrigerant circuit high-pressure gauge is cleverly positioned so that this can be read clearly and easily through the external cover to monitor the pressure and indicate whether a leak may or may not have occurred. Access to the internal parts, in the need of any replacements, can be achieved without long evaluation wait times. For example, if the replacement of non-return valves on sensors and switches is required then the quick replacement time is advantageous, reducing the amount of “down time” on the unit. All of which equates to an extremely work effective and reliable unit for your commercial needs. This demonstrates that, once supplied by Adveco, installing commercial heat pumps is easy and is also a more forward-thinking way for a greener environmental contribution. Reliability and efficiency equal greater sustainability, as well as keeping those costs lower all round.

We would argue that under the right circumstances, installing commercial heat pumps can be a relatively straightforward and successful way to introduce greater sustainability into the hot water system for new build projects. The FPi32 heat pump range represents a win-win, ticking all the boxes for a sensible purchase, offering a simpler, more efficient option for installing commercial heat pumps in a variety of ways. Once fitted, required maintenance is quick and easy, all whilst helping contribute to a project’s green credentials.

Learn more about renewables.

Fossil Fuels – Their Future In UK Commercial Buildings

The future of fossil fuels is a key issue that needed to be addressed by the government’s Heating & Buildings Strategy report which was published late last year. Statistics (PDF) from the Non-Domestic National Energy Efficiency Data-Framework (ND-NEED) from the Department for Business, Energy, & Industry Strategy (BEIS) defined more than 1,656,000 non-domestic buildings in England and Wales at the end of March 2020. 278,000 or 17% of this building stock is off-gas grid. It is estimated that these non-domestic buildings are responsible for nearly one-fifth of the UK’s carbon emissions, a scenario that will be further exacerbated by a predicted one-third rise in non-domestic floor space by 2050.

A major function of the campaign to Build Back Greener, the report outlines the near and long-term ambitions for phasing out unabated fossil fuels and a transition to low-carbon heat in order to achieve net zero in the UK. The intention is to use ‘natural replacement cycles’ and seek ‘trigger points’ to set long-term expectations within the building sector.

For commercial on-gas-grid buildings, this means putting in place a process to phase out installation of new natural gas boilers from 2035, with a caveat that the costs of investing in low-carbon alternatives have been suitably reduced. To achieve this will require the development of the market for replacement low-carbon sources of heat. The core technology for driving these new markets will be heat pumps, but there is also to be a consideration for other natural gas replacements. By 2026 the government intends consultation to be completed on the case for gas boilers/water heaters to be hydrogen-ready. The process of ‘greening the grid’ is perhaps the most interesting and least disruptive option, improving efficiency and replacing the current supply for those already connected to the gas grid with alternative low-carbon fuels, whether biomethane or hydrogen injection into the gas supply. The government has already committed to enabling the blending of hydrogen in the gas grid (up to 20% volume) and continuing to support the deployment of biomethane through the Green Gas Support Scheme as a method for decarbonising the gas grid.

To support early adopters in the small business space and lure them away from appliances that burn fossil fuels it has been proposed that a new Boiler Upgrade Scheme be launched this year which will support the installation of low-carbon heat pump based heating systems with a payment of £5,000, in line with domestic applications. Given the current additional complexities of commercial systems, with higher temperature demands, this may not be enough to encourage early adoption without the support of higher temperature devices designed specifically to meet commercial DHW demands. To further drive early adoption, the intent is to limit support for the construction of new gas grid connecting heating systems, effective this year. That does not apply to existing legacy structures with a grid-gas connection. Replacement boiler or water heater connections should be, as a minimum, more efficient than those being replaced. This it is proposed will be driven by the application of smart controls and supported by a new Boiler Plus standard that reflects improved efficiency and carbon savings. This should ape conditions set in ERP standards in 2018 for new boilers and emissions set under SAP10. Given that the latest generation of gas-fired condensing boilers and water heaters already greatly exceed the mandated requirements this policy could be seen to be redundant before it ever comes into law.

For the moment if your business uses gas, then you can upgrade to new gas appliances up until 2035, with hydrogen-ready options extending that window well into the 2040s based on current appliance lifespan. If you are considering upgrading a boiler of water heater, you could opt for a natural gas appliance, one that is not considered hydrogen-ready, for at least the next ten years without concerns of breaching new regulations, so long as the new unit is more efficient than the unit being replaced. This provides a safety net while assessing new technology options prior to the 2035 deadline. It would also be well worth considering the implementation of solar thermal preheat for gas-fired systems if you wanted to make sustainability commitments with proven and genuinely renewable technology.

Off-Grid, But Still Being Watched

For the 17% of commercial buildings currently operating off the gas grid, many of which will use LPG variants of boilers or water heaters versus oil, the report proposes phasing out the installation of new fossil fuel heating systems and switching to low-carbon alternatives. Plans would see the introduction of regulations to address large off-gas-grid non-domestic buildings (over 1,000m2) no earlier than 2024, followed by small and medium non-domestic buildings from 2026. Where low-temperature heat pumps cannot be reasonably or practicably accommodated other low-carbon heating options (such as high-temperature heat pumps, and potentially liquid biofuels) may be accepted as an alternative.

The wider aim is to support this near term change with greater investment in heat pump innovation, reducing footprint and making them easier to install. This process is, however, already front and centre for heat pump manufacturers without requesting government support. Better, more efficient, more environmentally and cost-friendly appliances is a clear market driver. At Adveco the recent introduction of the FPi-32 ASHP is a case in point, being extremely compact and better for the environment whilst being more efficient and therefore more cost-effective to operate. Despite being off-grid, potential developments in hydrogen delivery could also be a significant development for the future of fossil fuels, especially in more rural areas, although commercial off-gas grid sites are not uncommon in larger urban areas.

To further encourage this adoption, support for new LPG and oil heating systems could well be refused from this year onwards, with the potential for limited commercial funding support for replacement schemes, depending on scale, coming from the Public Sector Decarbonisation Scheme or the proposed Boiler Upgrade Scheme.

The process of transitioning commercial buildings from fossil fuels to low-carbon will, the report accepts, be gradual. It describes a process similar to the electrification of vehicles, which has depended on a mix of incentives and reducing the cost of entry.

Details of any incentives and clear evidence of where cost reductions are to come from remain hazy. Currently, production and operational costs of heat pumps remain high in comparison to traditional gas appliances that make use of lower-cost fossil fuels. The report, however, anticipates aggressive cost reductions of at least 25-50% by 2025 leading to parity with boilers by 2030. This then anticipates the natural replacement cycles of heating systems throughout the late 2030s and 2040s’ where capital expenditure on low-carbon replacement technology should it believes have lowered substantially. This is why 2035 has been set as the date when all new heating system installations should be low-carbon or hydrogen-ready (at least in those areas where future hydrogen supply has been established) effectively reducing the broad use of fossil fuels across a wide span of the commercial built environment.

Heat Pumps For Hot Water In Commercial Buildings

Heat pumps for hot water is synonymous with the drive to introduce greater sustainability into buildings in the push to achieve net zero by 2050. When it comes to the provision of  hot water (DHW) within commercial building projects there remains a consensus that, despite the rhetoric, currently there is no single ‘silver bullet’ technology able to deliver all the answers.

Until decisions are finally made in 2026 on a hydrogen-based future, the government’s stance is set on electrification, the creation of heat networks and the installation of heat pumps for hot water. For organisations looking for a quick sustainability win then heat pumps provide a clear opportunity, so long as the property is a new build. For new commercial builds, consultants are already specifying a greater electrical load to account for the additional power demands to support a mixture of heat pumps and direct electric afterheat necessary to meet the higher water temperatures and volume demands exhibited in commercial projects. New DHW systems will predominantly follow this model, taking advantage of heat pump performance efficiencies to create a hybrid approach to deliver pre-heating for as much as 75% of the water in a direct electric system. And with no gas to the building, no local generation of NOₓ and no flue to install this clearly has its advantages.

With 50 years of specialist experience in creating bespoke commercial DHW systems, Adveco is well-positioned to support such projects with a wide range of air source heat pumps for hot water, as well as indirect tanks and electric immersions.

Compatible with existing DHW distribution systems with higher thermal requirements, the FPi32 ASHP range is ideal for integration into a hybrid hot water system. Transferring heat from the air to a building, the FPi32 can provide a working flow of hot water at 55°C throughout the year, even when ambient air temperatures drop as low as -25°C.  When combined with either a gas or electric water heater and controls, the FPi32 helps reduce emissions and increases efficiency without compromising reliability or performance.

Packaged Systems With Heat Pumps For Hot Water 

The three models, available in 6, 9 and 12kW variants provide a low carbon source of hot water in a more compact, quieter, more efficient and easier to install unit. The FPi32 also sits at the heart of two pre-sized offerings, FUSION and the e-32 Packaged Hot Water System. For organisations with small to medium basin and sink led hot water demands, FUSION offers 16 pre-specified variants. With a choice of 6 or 10 kW preheat and 9 or 12 kW electric top-up, FUSION offers capacities ranging from 200 to 500 litres all rated at 10 BAR for high-pressure applications. Combining the FPi32 with a high-pressure ATSH calorifier with electric immersion, controls, and metering, FUSION systems are able to meet a range of continuous capacity hot water demands from 257-377 litres/hour for a wide range of commercial buildings.

Where space is at a premium, the e-32 Packaged Hot Water System comes into its own. This prefabricated all-electric water heating system uses an FPi32-9, a 200L GLC indirect preheat tank and a 200L GLE direct electric water heater all housed in a compact GRP housing. This ‘plant room in a box’ can be conveniently positioned externally on flat roofs or in unused or ‘dead’ spaces. This makes the system ideal for a wide range of commercial properties with regular hot water demands such as restaurants and boutique hotels, offices, schools, and light industry. The system is also exceptionally useful if refurbishing existing building stock.

Larger DHW demands

For projects with greater DHW demands, Adveco’s L70 high-capacity air-to-water monobloc heat pump is rated 70kW for typical UK operation at 5°C but climbing to a maximum 90 kW from a single compact unit. With a seasonal coefficient of performance (SCOP) as high as 4.08 the L70 is perfect for large scale commercial applications and can operate as part of a cascade installation for projects demanding greater capacity.

Able to draw and transfer thermal energy from the air, under the right circumstances, such as new builds with a high degree of insulation, using heat pumps for hot water represents an efficient way to significantly reduce the carbon emissions of a building. As the cost of grid electricity closes on that of gas, ongoing savings garnered from operating a hybrid ASHP based system, plus the reduction in CO₂ emissions makes the technology a truly attractive prospect for the latest commercial building projects.  New innovations in heat pump technology and refrigerants this coming year will further enhance the advantages of the technology cementing it position as a truly viable alternative for the provision of commercial-grade hot water.

For more visit Adveco’s renewables page

The Path to Low Carbon Hot Water

When it comes to tracing a path to low carbon hot water, the design of applications for commercial hot water systems has remained remarkably consistent and if a building is more than ten years old it is going to be built around either a condensing gas water heater or an indirect water heater and boiler. Gas-based hot water systems were specified because this was the most cost-effective and cleanest way of producing high-temperature hot water.

In the past decade though we have seen a seismic shift in thinking driven by the wide acceptance of the harmful effects of global warming and a need to address its root causes. This solidified with the introduction of the Climate Change Act in 2008, and the subsequent drive to make the UK net zero by 2050. With the resultant closure of coal-fired power stations and increasing dependence on wind and solar, the carbon intensity of grid electricity has reduced in line with gas, which has, in turn, remained relatively static since the 1990s.

With the Government’s aggressive new Net Zero Strategy, despite similar carbon intensities for heating from either gas or electric, the latest regulations as outlined in the Heat & Buildings Strategy will deem gas systems alone to be too carbon polluting in commercial-scale buildings. So what path to low carbon hot water can you take? To decarbonise domestic hot water (DHW) applications there are currently two core technology options, air source heat pumps (ASHP) or solar thermal. Although both can provide low or zero-carbon heat, neither can fully replace an existing water heating system. Since commercial DHW systems must operate in excess of 60°C to prevent the threat of legionella, ASHP efficiency, designed to work with lower temperatures, rapidly falls away limiting supply. Solar thermal on the other hand is limited by the sun’s availability across the year, and it is worth remembering will not provide space heating either. However, both can be used as a source of preheat to reduce energy use. Both will work equally well with after heat provided by either gas or direct electricity.

Choosing the right path to low carbon hot water for your building

For buildings already on gas and that rely on large amounts of DHW – a large proportion of current commercial UK properties – solar preheat is the preferable option. Depending on the site and energy consumption habits, solar thermal will typically provide around 30% of the hot water demand.

For new build properties, the expectation is for specification to default to a mixture of heat pumps and direct electric afterheat. For new commercial builds, consultants are specifying for greater electrical load to account for the additional power demands. This though is a costly addition for legacy properties wanting to introduce electrification for higher demands of hot water and heating.

The electrification of buildings is the most common vision, and one the Government is driving with its aggressive target to achieve 600,000 new heat pump installations every year by 2028. Many of these will be for domestic properties, but a considerable proportion will be expected to be introduced via commercial projects. New DHW systems will predominantly follow this model, taking advantage of heat pump performance efficiencies to create a hybrid approach to deliver pre-heating for as much as 75% of the water in a direct electric system. And with no gas to the building, no local generation of NOₓ and no flue to install this clearly has its advantages. This is certainly why the government is championing this technology as the preferred path to low carbon hot water and heating.

However, this approach does not factor in running costs.  While the grid may have reduced its carbon, its cost per kWh has risen consistently over the past two decades. Gas prices on the other hand have remained essentially static until the latter quarter of 2021.  Of course, a proportion of the grid electricity is still generated by gas-fired power stations, so electricity charges also spike in response to any upward fluctuation in gas price. Despite the ASHP performance efficiencies, this has meant the running costs still increase approximately three times due to the difference in current gas/electric prices. For smaller hot water demands in new builds, where the need for a gas supply has been avoided, that additional cost may be acceptable. And we certainly see larger organisations faced with ESOS audits and SECR reporting be willing to absorb the increased running costs to introduce sustainability into their properties as a part of their corporate net zero policy.

Commercial sites with existing gas should really look at continuing to use it. Ten years ago, it was very difficult to argue for introducing solar thermal because the numbers really did not stack up against the price of gas. The capital costs of installation and maintenance versus the operational savings meant many early projects failed to recoup their investment, even with the support of RHI.

Today we are in a very different situation, and if electrical costs can be offset, then the numbers really start to look favourable for adopting solar thermal. A ten-year return on investment becomes very achievable and the property gains undisputed carbon and cost savings. Additionally, the current generation of condensing gas water heaters incorporate features such as flow regulation to automatically optimise the supplied output from the heat exchangers ensuring maximum efficiency. Models with multiple integrated heat exchangers offer load balancing for optimal long-life operation and inbuilt redundancy guaranteeing continuity of service. Those offering titanium-stabilised stainless-steel construction are also highly resilient; meaning warranties on the heat exchanger and burner components can be as much as a decade and operational lifespan should easily be 15+ years. That places replacement well into the early to mid-2030s and that is important because it means gas infrastructure remains in place for adaption to the next generation of hydrogen-based gas supply. The Government expects this will be a core component for meeting net zero at a national level, especially for buildings with higher energy demands. With hydrogen policy to be confirmed in 2026, retaining gas in existing commercial buildings keeps options open and future-proofs a building for other emerging heating technologies.

While we must all recognise the importance of excluding fossil fuels from future commercial systems and advocate all-electric systems for new builds, it is important to understand the implicit costs and difficulties of retrofit and replacement of systems throughout the thousands of legacy commercial buildings that define the UK’s urban landscape. The hybrid approach is unavoidable for commercial projects seeking a path to low carbon hot water and is the most sensible, practical, and cost-effective option. Whether all-electric or using gas after heat, commercial organisations can actively drive sustainability and retain control of operational expenditure for decades to come.