Posts

Heat and Buildings Strategy Unveiled

The Government’s commitment to decarbonising the UK’s electricity system was confirmed by Prime Minister Boris Johnson and Business and Energy Secretary Kwasi Kwarteng last night with the announcement of the Heat and Buildings Strategy, a “plan to move to clean energy and a carbon-neutral economy.”

The key points announced intend to drive down the cost of low carbon heating technologies like heat pumps, and invest in working with industry to ensure that in future they are no more expensive to buy and run than fossil fuel boilers. Of the £3.9 billion of new funding to decarbonise heat and buildings, £450 million would be funnelled into a domestic Boiler Upgrade Scheme launching in April to help fund the installation of heat pumps for domestic heating.

£1.4 Billion For Public Sector Heating

The remaining funds will be invested over the coming three years through the Social Housing Decarbonisation Fund, the Home Upgrade Grant scheme, and the Heat Networks Transformation Programme and for reducing carbon emissions from public buildings through the Public Sector Decarbonisation Scheme which will be allocated £1.425 billion.

The plan accepts that there will need to be a mix of new, low-carbon heating responses for different property types in different parts of the country – such as electric heat pumps, heat networks and potentially hydrogen. With funding intended to ensure all new heating systems installed in UK homes from 2035 to be low carbon. As previously observed, though, the replacement of a gas boiler with a ‘Hydrogen ready’ appliance would not be in breach of this ‘no new gas boilers’ after 2035 stance. Additionally, gas generation continues to play a critical role in keeping the UK electricity system secure and stable, the development of clean energy technologies intends that it be used less frequently in the future.

The statement from Prime Minister Boris Johnson concludes, “The Heat and Buildings Strategy sets out how we are taking ‘no-regrets’ action now, particularly on heat pumps, whilst supporting ongoing trials and other research and innovation on our future heating systems, including on hydrogen. We will make a decision on the potential role for hydrogen in heating buildings by 2026, by learning from our Hydrogen Village pilot. Heat pump technology will play a key role in all scenarios, so for those who want to install them now, we are supporting them to do so.”

A Luke Warm Reaction?

This much-delayed Heat and Buildings Strategy announcement should be a rallying call to kick-start Britain’s new heat pump industry, and the Government’s continued policy to address carbon emissions is to be applauded. However, the scale of investment appears to fall far short of the numbers typically cited to start to really move the needle when it comes to reducing national carbon emission levels. It also ignores the potential complexity and additional costs surrounding the installation of heat pumps into existing buildings. There also remains considerable question marks over how funding will apply to the commercial sector and for other low carbon systems such as solar thermal. Low cost, low carbon heating for homes is a strong political message, but this sector still only accounts for 15% of the UK’s harmful emissions (Source: BEIS 2019 UK greenhouse gas emissions). Business still accounts for 17% of emissions, with transport and energy supply generating 48%.

The launch of the Heat Network Efficiency Scheme (HNES) demonstrator programme aims to increase the provision of heating services provided to businesses, but as the Government states, “There will be no single policy or technology that cuts carbon emissions to virtually zero, but a diverse mix of technology, such as heat pumps and potentially heating appliances fuelled by hydrogen, alongside green projects like heat networks, that will combine to decarbonise heat in buildings over the next three decades.”

Greater clarity from the Government regarding its position on support for improving hot water and heating systems within non-public sector commercial buildings, therefore, remains elusive. For small to medium enterprises in particular this remains a considerable barrier to introducing low carbon alternatives prior to 2030.

Adveco can help navigate the move to lower-carbon technology for commercial hot water and heating. Talk to us today. 

Tackling Global Warming – Why COP26 Matters

Boris Johnson took to the stage last week to announce we must “grow up” as a species at the UN General Assembly. The UK Prime Minister spoke on how we must look towards greener living for the Glasgow Conference of the Parties (COP) 26 summit. This congregation, it is hoped, will build upon the Paris accord that, in 2015, for the first time saw a singular agreement for tackling global warming and cutting greenhouse-gas emissions.

Why is COP26 So Important?

COP26 will see representation from 200 countries to present plans to cut emissions by 2030 to keep global warming “well below” the Paris established 2°C above pre-industrial levels. The ultimate goal for tackling global warming is to aim for 1.5°C with Net Zero emissions by 2050 to avoid greater climate catastrophe by the end of the century.

Johnson observed that this is our “turning point” to do better and “that means we need to pledge collectively to achieve carbon neutrality – net zero – by the middle of the century.” He expressed clearly the urgency in the actions needed to be taken to, not only, save ourselves but the many species which live on this Earth.

Those countries attending are expected to formally announce their plans for reducing emissions and tackling global warming in the coming weeks prior to the commencement of the summit, with more announcements expected during the two weeks of planned talks.

The US has announced a major investment in green initiatives with an $11.4bn per annum contribution in climate finance and China this week has announced plans to cease construction of overseas coal plants. Though generally welcomed, the latter move currently fails to address the use of domestic coal-fired plants, one of the easiest ways for green gains to be quickly achieved at a national level.

The Real Challenge of “Going Green”

With coal removed, the challenge of tackling global warming really sets in. The UK’s carbon budgets are well known to now be off track, and the Green Alliance has stated current plans will deliver less than a quarter of the cuts needed to meet the UK’s aggressive 2030 climate goal – intended to cut 78% of emissions from a 1990 baseline by 2035. The target also fails to account for emissions created abroad in the process of manufacturing goods bought in the UK. This issue of embedded carbon in the supply chain is a complex and difficult challenge that will no doubt be brought to bear on commercial organisations already facing ESOS audits and SECR reporting, and is why open, large scale support for COP26 from the likes of China is so critical.

Here in the UK, the government’s promise to put effective policies in place has been slow to materialise. Disagreement over the future of gas boilers and wider green funding has held up key announcements that should be delineating much-needed guidance for a commercial sector facing immense change and considerable capital and operational outlay if Net Zero is to be realised.

An End to Coal Power?

There is, however, a cautious sense of progress, with great attention being turned to the meeting in Rome late in October of the G20 nations.  Together these are responsible for 80% of current global emissions. If these nations can agree to cease the use of coal, COP26 has the potential to be one of the most decisive events since Paris if it can lead to a speeding up of the global phasing out of coal power. Then the real work starts. Additional agreements on the reduction of deforestation, a more rapid switch to electric vehicles (EVs) and wider protection from the impact of climatic extremes are all expected to be key objectives.

Johnson declared how these opportunities to become greener are not out of reach as “We have the technology: we have the choice before us.”

Striking a Balance When Heating Commercial Buildings

From the commercial perspective, Adveco is one of the leading proponents of how technology can be best applied when tackling global warming by supporting a more sustainable approach, particularly for the delivery of business-critical hot water. We recognise the importance of excluding fossil fuels from future commercial systems and advocate all-electric systems for new builds. We also understand the implicit costs and difficulties of retrofit and replacement of systems throughout the thousands of legacy commercial buildings that define the UK’s urban landscape. For this reason, we also strongly support the continued use of gas, but within a hybrid approach to provide cost-effective, lower carbon applications that remain future-ready for next-generation Net Zero technologies, and in particular Hydrogen mixes for commercial hot water & heating.


Adveco commercial hot water and heating. Speak to Adveco about tackling global warming through efficient, low-carbon commercial hot water and heating systems (For schools, hospitals and care homes too!)

Call us on 01252 551 540 or see our other contact details.

Finding the Answer to Schools Sustainability

The Government’s drive toward Net Zero and its “green industrial revolution”, last November gave a clear message that publicly funded organisations would be expected to be leading the charge when it came to demonstrating sustainable developments. The Department for Education (DfE) has already increased focus on property-related efficiency, and the expectation is this will only increase if schools sustainability is to be delivered across their estates.

But understanding how a school property’s assets contribute to overall performance, and how individual assets perform against technical criteria for sustainability has never been more challenging for estate managers.

The complex technical issues that surround commercial-grade domestic hot water (DHW) and heating applications within schools demand strategic, real-world understanding. Not only are there physical limitations when it comes to technologies on offer, but there are also considerable variances in capital expense and ongoing operational costs that without doubt contribute considerably to the annual costs of running a school. That is a critical issue for authorities and academies that need to balance the demands of change within often restrictive budgets.

The challenge of meeting schools sustainability goals

For education sites that typically exhibit a large DHW load, there remains a strong argument for employing gas-fired water heating. And, just as electricity is becoming greener, so too can the gaseous fuels when blended with hydrogen and other synthetic fuels. With publicly funded organisations increasingly being mandated to demonstrate clear and real investment in sustainable and low carbon technology schools face a complex, real-world and political challenge.

Far too often, school hot water systems suffer from poor application design where a lack of understanding of different types of hot water system leaves systems oversized to prevent perceived hot water problems. Inefficient and less environmentally friendly, such systems are more costly to build and operate for their entire lifespan. This can be further exacerbated by the complexities of introducing Air Source Heat Pumps (ASHP) – the current clear preference of the Government – and Solar Thermal systems.

With ASHPs offering greater efficiencies in low-temperature systems, the high-temperature demands of domestic hot water (DHW) for school applications can be a challenge. It is recommended to calculate emissions at a working water temperature from the ASHP of 55°C, this is then hot enough to provide realistic levels of preheat for a commercial DHW system. Schools’ applications using heat pumps are going to be complex and, when compared to gas-fired alternatives, are going to have higher up-front and operational costs. Offsetting these additional investments though are new efficiencies and sustainability that reduce CO₂ emissions.

Now is also a good time to reconsider the integration of a solar thermal system as part of the premises. Not only a proven and extremely reliable technology, for the past 15 years solar thermal has offered a clear path to reducing CO₂ emissions for sites that rely on large amounts of hot water.

Solar Thermal provides an effective way to offset the new financial burden that comes from moving from gas to currently far more expensive electricity. A ten-year return on investment becomes very achievable, and, with zero emissions, the undisputed carbon and cost savings make this technology increasingly more viable.

Solar has always been used as a preheat with the coldest water possible to maximise the efficiency and output: this gives maximum free heat with no carbon emissions. But there is also a good case now for using solar thermal with heat pumps and electric if set up as a mid-heating system which can lower both carbon and cost.

A Simple Choice

For the time being, schools looking to decarbonise their systems have a simple choice, use either solar thermal or ASHP to preheat water, and gas or direct electric as after heating. By using preheat you can offset up to 75% of a systems energy demands and thereby actively reduce carbon emissions. All these technologies can be made to work together, but for new builds, the expectation will be to fit a heat pump and direct electric system. For pre-existing systems that use gas then the additional use of solar thermal is recommended. This also has the advantage of retaining gas-based system infrastructure, so the building has the option, at a later date, to evolve its use to green gas alternatives. So if you already use gas on-site do not feel pressured into removing it quite yet.

None of the above is a single, all-encompassing answer for schools seeking to achieve Net Zero, but when used together they can provide reliable, business-critical hot water and heating systems that deliver value for capital investment, exhibit lower ownership costs over their lifetime and will help to meet current sustainability targets. They also provide a clear path for the integration of new technologies, such as high-temperature heat pumps and hydrogen ready appliances which will ultimately help to deliver Net Zero by 2050.

At Adveco, our dedicated application design team provide accurate, bespoke sizing, for both new build and refurbishment projects. Once correctly sized, we can recommend, supply, commission, and service the optimal appliances whether they be gas, electric or a mixed hybrid approach that incorporates solar thermal, heat pumps and heat recovery systems. This is the best way of ensuring schools hot water demands are met in the most cost-effective and sustainable manner.

Read more about how Adveco can help achieve schools sustainability


Adveco commercial hot water and heating. Speak to Adveco about finding the answer to schools sustainability.

Call us on 01252 551 540 or see our alternative contact details.

What you Need to Know About Net Zero Now

What is “Net Zero”?

With greenhouse gases predicted to reach record highs by 2023 and no sign of slowing, the warnings of the impact of global warming and climate crisis are increasingly becoming apparent to all.  As UN nations converge to address the fundamental issues of climate change, it has become a “front and centre” issue for UK businesses.

In 2008 the UK Government introduced the Climate Change Act legislating for change to reduce the UK’s greenhouse gas emissions by 80% by 2050 and then in 2019, increased the commitment to a 100% reduction which has come to be known as “Net Zero”.

“Net Zero” means that any emissions are balanced by absorbing an equivalent amount from the atmosphere. The Government’s current aggressive response is to drive positive movement across every sector to meet these goals, with a focus on domestic, commercial, transport, agriculture, and industrial usage across the UK.

The effects of Greenhouse gases

As we draw closer to 2023, the effects of global warming are undeniably present, with prior predictions becoming reality — loss of sea ice, accelerated sea level rise, and extremes of weather with heavier rainfall and flooding, plus longer, more intense heat waves leading to drought and wildfires.

The world was amazed by the effects of COVID-19 lockdowns on the environment as the global pause rapidly led to positive improvements, surprising even scientists at how we can truly meet our 0% emissions goals and begin to save our planet by 2050.

How can we meet these goals?

The possibilities of making these goals achievable are very high, and we can all make the smaller changes necessary to do so. However, change for the commercial sector comes with added complexity but also greater rewards. Heating and hot water have long been recognised as key contributors to emissions from across the built environment. They of course are also rightly regarded as business-critical services.  Decreasing the use of fossil fuels to meet the “Net Zero” goal seems obvious, and “simply” changing to a more sustainable energy system can considerably reduce emissions. But there are other key business considerations to take into consideration, with everything from running costs to the capital investment required to modernise both building fabric and systems high on the agenda. Building regulations also play a major role in decision making, and there remains considerable confusion over what “green” technologies should be adopted and when…

Our name is derived from “Advantage Eco”, so it is fair to assume we firmly believe in the need for decarbonisation and the drive to attain Net Zero across the commercial environment before the 2050 deadline. That said, we are also 50-year adherents of the value of deploying gas in commercial hot water applications. This is because of the necessary high temperatures required for safe operation and the cost-effective operation it offers businesses. Like the rest of the UK’s gas-based service market, we have high hopes for the eventual introduction of green hydrogen-based alternatives to fossil gas, with potentially a much lower impact on existing infrastructure and simpler, more cost-effective like for like appliance replacement.

But we also recognize the limitations of a hydrogen-centric viewpoint, not least in terms of achieving national distribution on the scale currently expected by gas users. So, there must be real-world alternatives in play now if achieving Net Zero is going to become a commercial reality. From the proven capabilities of solar thermal systems supporting either gas or direct electric to low carbon air to waterside heat pumps and direct electric heating, there are clear paths of evolution open to organisations seeking to move onto the path to Net Zero. Our experience as a specialist creator of commercial hot water systems can help you as an organisation redefine the way your buildings consume energy and reduce your generation of harmful emissions without impacting critical offerings that define daily operation and the comfort and safety of staff and customers alike.


Talk to Adveco today about how our team can help design hot water and heating applications that remain cost-effective to build and operate for a better future.

Call our head office on 01252 551 540 or via our other contact channels.

Adveco Named Double Finalist in 2021 HVR Awards

  • Packaged e32 Hot Water Systems named finalist in the HVR 2021 Commercial Heating Product of the Year category
  • FPI32 named finalist in the HVR 2021 Heat Pump Product of the Year category

Hot water and heating specialist Adveco is proud to announce it has been named a finalist in two key categories in the 2021 Heating & Ventilation Review (HVR) Awards. Adveco’s Packaged e32 Hot Water Systems has been named a finalist in the HVR 2021 Commercial Heating Product of the Year category, while the FPi32 range of air source heat pumps (ASHP) was named a finalist in the Heat Pump Product of the Year category.

The HVR Awards celebrate the products, brands, businesses and people that have led the way with their innovation and unrivalled levels of excellence, inducting them into the prestigious HVR Awards ‘Hall of Flame’.

Bill Sinclair, technical director, Adveco, said:

“Both products take full advantage of using R32 refrigerant to take us toward responsible, sustainable systems that deliver business-critical hot water without harming the environment.”

The Adveco FPi32 is a range of compact monobloc design 6, 9 & 12 kW air to water heat pumps providing hot water at 55°C, or higher in hybrid systems. The FPi32 range leverages R32 refrigerant to enhance year-round efficiency (COP as high as 5.23) while reducing the global warming potential (GWP), thereby lowing environmental impact.

The FPi32-9’s compact monobloc form factor also makes it perfect for integration into Adveco’s Packaged e32-Hot Water System.  A complete, highly efficient, low carbon, all-electric packaged water heating system that uses the FPi32-9 to provide preheat for reliable high-temperature water supplied in a convenient GRP housing.

The air to water heat pump provides the system preheat from 10°C to 50°C, supplying 70% of the DHW load. Offsetting 70% of the energy requirement means the Packaged e32-Hot Water System can demonstrate a 47% reduction in energy demands and CO² emissions for the same output of 500,000 litres of hot water each year when compared with a similar direct electric-only system. The reduced energy demand also means operational savings can be added to the capital savings secured during the design, supply, and installation phases.

The system is also ground-breaking in the application of a completely new specification that lowers the heat intensity, without detrimental effect to the demands for hot water, meaning the Packaged e32-Hot Water System is also more resistant to scale, reducing maintenance demands.

“By unifying innovative, low carbon technology with excellence in application design, all provisioned under an offsite construction model, we can bring a wealth of new advantages for consultants, contractors, installers and owner-operators. FPi32 and our pre-sized e32-Hot Water System not only go a long way towards helping businesses meet carbon targets this decade but also help keep running costs low,”

adds Bill.

The 2021 HVR Awards winners will be announced in a virtual presentation on Oct 7th. For more details visit the HVR Awards website.


Adveco commercial heating and hot water systems.Speak to Adveco for all your commercial hot water and air source heat pump requirements. packaged plant rooms. or even our solar thermal solutions.

Call us on 01252 551 540 or see other options on our contact page.

Adveco FPi32 Range Named Finalist in 2021 National ACR & Heat Pump Awards

Commercial hot water and heating specialist Adveco is delighted to announce it has been named as a finalist in the 2021 National ACR & Heat Pump Awards for its range of FPi32 Air Source Heat Pumps (ASHP).

The Adveco FPi32 is a range of compact monobloc design 6, 9 & 12 kW air to water heat pumps providing hot water at 55°C, or higher in hybrid systems. The FPi32 range leverages R32 refrigerant to enhance year-round efficiency (COP as high as 5.23) while reducing the global warming potential (GWP), thereby lowing environmental impact. The judging panel’s selection process assessed the FPi32 range on a number of key attributes including technical innovation; energy efficiency; environmental impact; plus installation and operational benefits for customers.

R32 commercial Air Source Heat Pump (ASHP).With Advanced Vector Control technology delivering accurate response to variable demands, integrated, intuitive controls, non-return valves, pressure gauges, and frost protection as standard, FPi32s are easy to install and maintain with low running costs. The FPi32 also features low noise impact with quiet 52dB operation.

The FPi32-9’s compact monobloc form factor also makes it perfect for integration into Adveco’s Packaged e-Hot Water System.  A complete, highly efficient, low carbon, all-electric packaged water heating system that uses the FPi32-9 to provide preheat for reliable high-temperature water supplied in a convenient GRP housing.

Bill Sinclair, technical director, Adveco, said, “The use of R32 refrigerant may be a relatively small step in terms of technical development, but its use has major implications in terms of taking us toward responsible, sustainable systems that deliver business-critical hot water without harming the environment. Not only does this go a long way towards helping businesses meet carbon targets this decade, but it also helps keep running costs low.”

The winners will be announced at the National ACR & Heat Pump Awards on October 20th and we wish all the other finalists the very best of luck.

Discover more about the FPI32 Range of ASHPs

Will Hydrogen be the move we need towards Net Zero?

With emissions difficult to fully eliminate from certain parts of the economy, most experts agree that green Hydrogen is essential to meeting the goals of Net Zero by 2050. Urging the Government to publish its Hydrogen Strategy sooner rather than later, it has confirmed support of the crossover in a domestic setting but is yet to announce a defined strategy for the commercial industries. So, will the UK turn to Hydrogen use everywhere?

What are Blue and Green Hydrogen?

Blue Hydrogen:

is when natural gas is split into hydrogen and carbon dioxide (CO2) with the use of either Auto Thermal Reforming (ATR) or Steam Methane Reforming (SMR).  The CO2 is captured and then stored, reducing emissions into the atmosphere reducing environmental impacts on the planet.

Green Hydrogen:

Is hydrogen fuel that is created with the use of renewable energy in place of fossil fuels. It has potential for manufacturing, transportation and much more, with clean power and water the only by-product.

The advantages of switching to Blue and Green Hydrogen

Hydrogen has many advantages as it is abundant and supply is near limitless. It can be used on site of production and/or hydrogen is capable of being transported elsewhere if required. The environmental advantages of hydrogen are it contains almost three times the energy of fossil fuel use, therefore less will be needed to do the equivalent work.

Another advantage is hydrogen, unlike current methods, can be produced from excess renewable energies, and wherever there is water and electricity to generate more electricity or heat, for longer periods of time, in much larger quantities.

The disadvantages of switching to Blue and Green Hydrogen

Highly flammable in concentration and light compared to other fuels, as with other commonly used fuels, such as natural gas and propane, Hydrogen needs to be handled with caution. Hydrogen’s lightness does mean that it will disperse quickly into the atmosphere should there be a leak, reducing the danger of ignition. This is particularly important if hydrogen is to be transported via the existing gas infrastructure. Hydrogen moves differently from natural gas and is more likely to escape from older pipework than natural gas, so there will be concerns over the safety of a network seen to be leaking hydrogen.

In addition, the capturing process will increase the methane and propane burden so hydrogen production may not be as environmentally friendly as many may be lead to believe as

Environmentalists opposing the switch to Hydrogen

Environmentalists have openly been warning the Government to ignore the “hype” of Hydrogen to provide heat within the UK. As the Government pushes for its’ Net Zero goal, proposed plans suggest for new natural gas boilers (domestic) to be phased out in the foreseeable future and replaced with Hydrogen-ready alternatives. But environmentalists are pushing for electrical heat pumps to be endorsed over Hydrogen, which they believe is not environmentally benign.

Hydrogen for commercial use

With around half of the UK’s energy consumption being used for heating and contributing towards a third of greenhouse gas emissions, reducing carbon from the heating and hot water industry supply is a key issue for the UK to meet the plans set out for Net Zero by 2050.

Hydrogen has seen lots of traction over the years as a replacement for fossil-based gasses, converting the existing gas infrastructure to be used with Hydrogen low carbon alternatives in the UK.

One of the biggest difficulties to overcome with the crossover to Hydrogen will be the sheer scale of installation of the new appliances within current buildings. However, there are clear advantages of using existing familiar infrastructure, reducing the need for extensive remedial works that would be seen with an electric-only alternative. Other than the boiler/water heater replacement, pipework, tanks, and heating emitters such as radiators would remain unchanged. This helps avoid major issues caused by the limitations of existing space and accessibility.

Our take…

What is clear, is that hydrogen is not going to be the holy grail of zero-carbon heating for commercial projects. The simple truth is that it would be currently impractical to switch the gas grid to 100% hydrogen for zero-carbon heat, despite the existence of the extensive natural gas grid in the UK.

Producing bulk hydrogen from renewable electricity is also still expensive, and any produced by ‘surplus’ renewable electricity is not expected to meet the scale of demand. The production of low carbon hydrogen at scale will rely on using imported natural gas and deployment of carbon capture and storage (CCS) to offer a cost-effective route to produce lower volumes of hydrogen. Even when using CCS, it is important to realise hydrogen from fossil fuels will not be zero-carbon.

But, in terms of cost-effectively reducing emissions from energy use to a very low level by 2050, producing hydrogen via a low carbon route and storing it at scale makes it a potentially valuable complement to electrification.

With the practical provision of Hydrogen still some years away for the majority of the UK, Adveco, with its’ broad experience in gas and electric water heating, plus low carbon and renewable alternatives is perfectly placed to consult on short-, mid- and long-term options for your commercial projects, whether new build or refurbishment.

A Call for Greater Clarity on Net Zero

Due this Autumn, and expected to set precedence at the 26th UN Climate Change Conference (COP26) in Glasgow this October/November 2021, the government’s net zero strategy continues to attract criticism. Last November, Prime Minister Boris Johnson announced a wide-ranging plan with ten key deliverables to drive what he described as “Our green industrial revolution.” This was to be supported by a £4bn investment which was both celebrated, but also met with concern that this would simply not be enough of an investment.

Whilst the commercial sector has clamoured for better defined objectives and meaningful inducement to achieve the increasingly aggressive timetable, the Climate Change Committee (CCC) says climate leadership is being undermined by inadequate policies and poor implementation.

Set up under the 2008 Climate Change Act to independently advise the UK government on how to deal with global warming, this latest accusation is damning. The CCC says that, at current progress, only 20% of the UK’s ambitions up to 2035 will be achieved.

Previous carbon budgets set by the government were met through ‘easy wins’ such as shutting down coal-fired power stations. But as was predicted, with cuts in emissions at the scale demanded being far more complex to achieve future carbon budgets are no longer on track.

The CCC has directed its complaints at the lack of engagement being made with the public to make essential changes for protecting the climate. This is similarly mirrored across the commercial sector, here despite major organisations making the effort to engage in sustainability planning, government policy to date has failed to engage, instead focussing rhetoric upon domestic and large-scale industrial planning. This is baffling considering commercial buildings currently generate up to 40% of the nation’s carbon emissions from heating.

Recommendations for Sustainable Heating & Power

The CCC’s recommendations concerning heating and power likewise lean toward domestic use, wanting to see the curtailment of gas boilers by 2035 in new build properties, with a conversion to heat pumps. They make clear this process requires subsidising of installations costs to succeed. Heat pumps are simple to install in a new build but become complex with higher capital investment required when dealing with refurbishing properties with an existing gas system. This is exacerbated by scale and high-temperature demands for DHW in commercial properties. If this process of change is to happen in any meaningful way considerable subsidies need to be put in place to drive the replacement of ageing, “dirty” systems that could conceivably continue to operate for a decade or more under normal servicing processes. As the CCC states, this requires better engagement to induce change.

The CCC also wants to see taxes taken off clean electricity – though the government currently lacks policies on these issues and others, including waste and low-carbon heat networks. It’s a call echoed by Andy Ford, Professor of Building Systems Engineering at London South Bank University (LBSU), who has stated that, “Massive cultural changes do not happen without stimulus.” Reforming energy costs and subsidies is one example of the wholesale changes needed to begin making progress on the mass adoption of cleaner technologies to decarbonise heating.

The objective of achieving near-zero emissions in the UK by 2050, with a 78% cut in emissions by 2035, is to be embraced, but “Almost all things that should have happened have either been delayed or not hit the mark,” said committee chairman Lord Deben.

Whilst the government response that it will “Set out more of the very policies the Climate Change Committee is calling for as we redouble our efforts,” is encouraging, there is a recognised delay in Whitehall relating to decarbonisation initiatives. These include the Environment Bill, the transport decarbonisation plan and a net zero aviation strategy, which are likely to take precedence over the commercial built environment. Critically for the built environment, the government’s delayed heat and buildings strategy, which is expected to detail firmer commitments around the role of different low carbon technologies such as heat pumps, hydrogen boilers and district heat, is yet to be published. All this is leading to concerns over the “gulf between promises and actions” according to the CCC‘s chief executive Chris Stark. Following these comments by the CCC, Parliament’s Environmental Audit Committee (EAC) has warned that the Government must do more to ensure the availability of practical low carbon heating options at a reasonable cost.

Increasing Risks from Climate Change

With the risks of climate change to the UK being even higher than were appreciated just five years ago, the clock is ticking if we are to avoid regular cycles of 40C temperatures highs. Critical then is the delayed Treasury net zero review, which will determine how much cash is invested into the projected zero-carbon economy. Recent statements that focus heavily on domestic resolutions, with little addressing of commercial, outside of schools and hospitals, remains a concern.

While the commercial sector awaits greater clarification, talk to Adveco about how you can bridge the gap from current gas-based systems by leveraging high-efficiency, low-carbon and renewable technologies to reduce operational costs and drive sustainability within your commercial hot water and heating systems.


Adveco.Discover more about Adveco’s range services and air source heat pumps, solar thermal and heat recovery systems for commercial sustainability.  

Call us on 01252 551 540 or use the contact form.

 

Bridging the Gap to NetZero – Part 2

Hybrid Heating – the validity of gas in future hot water applications

In part one we looked at why you might adopt a hybrid approach to commercial hot water and heating as a route to achieving Net Zero in commercial properties. In this second part, we consider the continued validity of employing existing gas technology… 

There continues to be a call for a wide ban on the deployment of gas boilers in new properties, with a date of 2025 often mooted. Such a ban, though focussed currently only on domestic properties, would no doubt have repercussions for the commercial sector if/and when it comes to pass.  But it is worth noting that ‘hydrogen-ready’ appliances would be exempt from any broad ban, so gas has a role to play in that mix of technologies driving us forward to Net Zero.

According to Mission Innovation (MI), an independent clean-tech research programme, half of the global emissions reductions required to achieve climate targets by 2050 depends on technology that still currently remain at a demonstration or prototype phase. Whilst development continues into the provision of new fuels such as green hydrogen – and we could be looking at at least a decade before this is universally available –  there remain clear cases, especially in terms of reducing running costs,  for retaining existing gas technology for commercial applications. We also recognise that the retention of existing infrastructure is critical for the cost-effective deployment of long term next-generation green technology, especially considering the large scale challenge of retrofitting existing properties.

Since 2015 the wholesale price of electricity has climbed 20%, yet gas prices over the same period are down on average 15%.  The difference between the wholesale market price of electricity and its cost of production using natural gas provides us with the spark spread.

Commercial Air Source Heat Pumps (ASHP). At the time of writing, the spark spread is calculated to be 5.7.  For a heat pump to break even against a 90% efficient gas boiler, the heat pump must demonstrate a COP of 5.15. The Adveco FPI32-6 can exceed this COP, but only at warmer ambient temperatures. Far more realistic is to use seasonal COP, which at 5.15 is beyond the capability of most current generation units. When assessing the efficiency of commercial air source heat pump (ASHP) technology, we calculate the ratio between the electricity invested in order to run the ASHP and its output, this is the COP. The COP can be influenced by a number of factors including the energy needs and energy efficiency of a property, quality of hot water and heating system installation, and once operational, the energy manager’s competency in maximising the system output. We would expect high performing commercial heat pumps to show a COP that range from 2.9 to a very high 4.7 due to variance in seasonal external temperature and heating flow temperature. The average ASHP system will typically exhibit a maximum COP much lower than the necessary 5.15. It is also worth considering that the latest generation of commercial gas boilers will exhibit even greater efficiencies, for example, RP MD Boilers. Adveco’s MD boiler range can achieve a NET combustion efficiency of 106%. This means gas has a key role to play in ensuring a hybrid approach remains cost-effective.

As we progress forward, hydrogen-ready commercial gas appliances (boilers and water heaters) will leverage high efficiency, economic fuel blends with the additional advantage of considerably diminishing the carbon impact of commercial properties.

We see hydrogen playing a valuable role in meeting the needs for heating the UK’s commercial buildings but it will never be a 100% solution. This is why gas appliances in combination with heat pumps remain the best, and most cost-effective to deploy and operate method for commercial organisations to decarbonise operations and drive a low carbon economy.

Whether or not ongoing Government consultation decides to recognise the importance of ‘hybrids’ with financial support, the simple truth is that for the broad majority of commercial organisations looking to refurbish, capital investment and operational costs for heating and cooling systems are a critical decision factor. Hybrid systems offer the best option now and in the longer term as new green gas options come into play

The Hybrid Balancing Act

To truly reap the rewards of a hybrid heating system its energy management system needs to be implemented as part of the smart grid, with flexible electricity tariffs. When electricity volumes increase, prices fall. In a smart grid, when the corresponding price signal reaches the hybrid heating system it will be able to optimise the use of renewable electricity in terms of cost and availability.

In view of the extremely high volatility of renewable energy sources (RES) electricity, there will inevitably be peaks in supply above demand for electricity. In particular, this naturally occurs at high levels of wind and solar radiation. At present, an excess supply of RES electricity is either decommissioned at production peaks or sold. In extreme cases, as has been seen in the Netherlands, this could lead to negative electricity prices. To counteract this uneconomic development, it is necessary to introduce flexible electricity prices and pass them on to customers in order to stimulate production-dependent consumption. If there are high quantities of renewable energy in the grid, a heat pump will supply the building with heating and hot water. In cold phases, the heat pump covers only a part of the necessary heat output in the case of a hybrid system with the condensing gas boiler taking over to cover the remaining heat requirement and, if necessary, provides a higher system temperature.

This load management, the smart balancing of heat pump and condensing boiler operation, not only addresses the lifetime cost of operating a system it can help with the support of grid capacity (with fiscal remuneration if selling electricity generated), stabilisation of reserve capacities and potentially reduce the need for grid expansion.

The ability to provide greater efficiencies through smart metering and the use of flexible electricity tariffs to reduce operational costs for a lower total cost of ownership across the lifespan of the system is advantageous. The opportunity to impact load management across the grid however is a real game-changer for businesses being held up as a major guilty party when it comes to the continued generation of greenhouse gasses. Hybrid systems, therefore, offer a fast, cost-effective and realistic means to address ageing and environmentally unfriendly heating systems.


Discover more about renewable technology from AdvecoAdveco - bridging the gap to Net Zero with gas in hybrid hot water systems.

Call us on +44 (0) 1252 551540 or complete the contact us form.

Bridging The Gap To Net Zero – Part 1

Hybrid Heating – A Practical Response For The Commercial Built Environment

Adveco looks at the changing face of commercial hot water & heating, and the increasing importance being placed on the development of hybrid applications to address the real-world challenges of achieving carbon reduction levels set by the government through to 2050.

Around 40% of UK greenhouse gas emissions are accounted for by heating, cooling, ventilation, the provision of hot water and lighting the built environment, and, according to 2019 figures issued by the Department for Business, Energy and Industrial Strategy (BEIS), business remains the third-largest emitter at 17%. In order to achieve climate-neutral building stock by 2050 commercial organisations need support from the industry to provide immediate and practical measures.

Through the expansion of wind power and photovoltaic systems, the generation of electricity from renewables and the importance of electricity in the heating market is increasing, but natural gas still dominates. As attention shifts to a mix of district heating, heat pumps, wind and solar energy, studies show that over the next two decades renewable electricity will be crucial to the energy supply in the heating market.

That said, there remain strong differences with regard to the expected share of renewable energy supply. Independent research clearly argues for a multi-dimensional approach with an energy mix consisting of renewable energy and gaseous fuels with a high share of renewable energies. Studies that are more “almost all-electric” argue in favour of almost complete dominance of the heat pump, while the technology-open scenarios also predict large proportions of heat pumps, but also assume the use of gaseous fuels.

Just as electricity is becoming greener, via an ever-increasing share of renewable energy, so too over time will the gaseous fuels such as ‘green’ hydrogen gas and synthetics.

Why Take The Hybrid Route?

So, let’s consider the advantages of the hybrid approach. This, at the most basic for heating systems, consist of two heat generators, of which at least one is operated with renewable energies and one with fossil fuel. Often, a hybrid heat pump system consists of a heat pump (air source) designed for a system part load (baseload) and a gas condensing boiler for peak load, for example during the cold, dark winter months. In a fully hybrid heat pump system, both heat generators can cover the entire heating load, where the energy sources can be freely selected according to definable criteria including efficiency, emissions and price.

Commercial Air Source Heat Pumps (ASHP).

Compared to a conventional combustion heating system though, there will be issues of logistics and space requirements, but as hybrid systems are particularly relevant to buildings in which there is already a gas connection this is generally less of a concern. That said, a hybrid system will require two heat generators and two energy connections, one of which is an environmental heat source. This leads to higher complexity of the plant, requiring more effort and expertise from the system designer, supplier and installer. This all leads to higher CAPEX cost. It is typically estimated that the purchase and installation of a hybrid heating system compared to a pure condensing heating system is going to drive initial costs up by approximately 50 to 60%. So, what are the advantages that outweigh these initial costs?

For older commercial properties where a new heating system is required, but wider renovation is either not feasible or required, a hybrid system can control and avoid issues of project congestion when refurbishing, as the heat pump is used to supplement the pre-existing fossil-based heating system.  This helps to save costs as existing boilers can continue to be operated on the currently installed heat distribution, heat transfer and flue systems while the heat pump can benefit from an advantageous coefficient of performance (COP) in the right conditions and setpoints.

A hybrid heat pump/gas boiler system is able to reduce the maximum power consumption of a system by smartly balancing the heat generators for greater efficiencies and lower operational costs whilst guaranteeing high system temperatures to ensure the comfort of those still living or working in the building during refurbishment work. If the hybrid system is also equipped with a buffer tank and domestic hot water (DHW) tank the heat pump can achieve a high proportion of cover for space heating and DHW heating increasing the profitability of the system.

A hybrid heating system cannot only be controlled cost-effectively but it can also be optimised for CO emissions by selecting the optimal (ecological) heat generator whenever possible via an energy management system that incorporates smart metering.

Hybrid systems for commercial properties will typically be planned according to individual project requirements. In cold phases, the heat pump in the hybrid system can only take over part of the heating load due to the design. If necessary, the condensing boiler, especially on cold, dark days with high demand, but a limited supply of renewable energy, completely covers the heating load.

This versatility enables the energy manager to react to price fluctuations, especially in the power grid and possibly also in the gas grid.

Should the building envelope subsequently be renovated, the required heating load decreases and the existing gas boiler can take on less of the annual heating work or eventually could be put out of operation.

In part 2 we consider the continuity of using gas for future hot water applications