Read The Adveco November 2023 Newsletter
/in Catering, Education, Health, Hot Water, Hotels, Leisure, Net Zero, News, office buildings, restaurantsWelcome to the Adveco November 2023 newsletter. We are celebrating awards for the FUSION packaged electric water heater range and Live Metering which continues to garner attention for its ability to reduce capital expenditure when transitioning from gas to electric hot water systems. We also introduced the latest generation of MSS cylinder for heat pump based projects, look at the sustainability of existing office space and preview COP28 which debuts in Dubai latest this month…
Read The Adveco October 2023 Newsletter
/in Catering, Education, Health, Hot Water, Hotels, Leisure, Net Zero, News, office buildings, restaurantsWelcome to the Adveco October 2023 newsletter. This month we consider how a well-maintained system can affect air quality with new IAQ regulations coming into force. It’s also a busy time for events and awards. And the UK’s commitments to net zero seemed to be backpedalling as the prime minister’s planned speech on the subject was leaked to the consternation of many. We consider just how impactful these changes are likely to be on the commercial built environment…
IAQ in Commercial Buildings
/in Blog, Catering, Education, education, Health, healthcare, Legislation, Leisure, office buildings, restaurantsGiven that most of us typically spend up to 90% of our time inside buildings, indoor air quality (IAQ) is a serious consideration, especially as it relates to the health and comfort of the people who occupy it. Poor IAQ can have several negative health effects, including respiratory problems, headaches, fatigue, and allergies. It can also lead to decreased productivity and increased absenteeism.
Despite hybrid working becoming firmly entrenched across the country, IAQ remains an especially important issue within commercial buildings, given the significant time people still spend within them, whether working or visiting. IAQ can be affected by a variety of factors, including the building’s ventilation system, the materials used in its construction, and the activities that take place inside it.
The World Health Organisation (WHO) guidance on air quality has advised member states to consider air pollution to be as big a threat to human health and well-being as climate change and adjusted almost all of its previous maximum target levels for airborne pollutants downwards. It linked long-term exposure to even relatively low concentrations of ambient and indoor air pollution to lung cancer, heart disease, and strokes – putting the health impact of pollution on a par with poor diet and smoking.
There are several things that can contribute to poor IAQ in commercial buildings. Some of the most common causes include:
Many building materials, such as carpets, furniture, and paints, can release harmful pollutants into the air. These pollutants can include volatile organic compounds (VOCs), formaldehyde, and asbestos.
Pollutants from activities that take place inside a building can also contribute to poor IAQ. For example, cooking, smoking, and using cleaning products can all release pollutants into the air.
And if a building’s ventilation system is not working properly, it can’t remove pollutants from the air. This can lead to a buildup of pollutants and poor IAQ.
When the Covid-19 pandemic struck, highlighting the role played by poor-quality indoor environments in the spread of viruses and other airborne contaminants, new standards were deemed necessary, elevating publicly available specifications in development by the British Standards Institute and BESA to a full British Standard BS40102-1.
The new standard gives recommendations for measuring, monitoring, and reporting indoor environmental quality (IEQ) in all types of non-domestic buildings. It includes an evaluation and rating system for air quality, lighting, thermal comfort, and acoustics.
Given that building retrofit work carried out to improve energy efficiency had, in many cases, led to poorer quality ventilation this new evaluation will give building managers a benchmark score to help them identify areas of below-par performance. This enables planned improvements which include IEQ measures in any retrofit and renovation work to improve the health and well-being of occupants.
To meet the new standard organisations will need to tackle conditions that have a direct impact on human health including humidity, and excessive levels of CO2, CO, NO2, volatile organic compounds (VOC), airborne particulates and mould.
Adveco has for many years operated a system of checks to ensure the comfort and safety of buildings, including initial system commissioning to ensure correct and safe installation of appliances, in particular its gas-fired water heating and flues. This is especially important in controlling and safely removing any CO2 and NOx emissions from proximity to building users. Regular annual service is a critical facet of such safety checks, yet can be a process that slips once products are no longer under their initial warranty period. This is both a false economy and of potential danger to building users. While new builds will embrace all-electric systems which effectively negate NOx and on-premise CO2 generation, pre-existing commercial sites need to be increasingly vigilant, especially when ageing gas-fired systems remain in use. Mould, a type of fungus which produces airborne spores, is also a contributor to poor IAQ so regular service also helps to identify or prevent cases of damaging corrosion (in soft water areas) and limescale build-up (in harder water areas) which can lead to leaks that then encourage growth of mould in plantroom areas.
Setting IEQ performance benchmarks will make it easier for facilities managers to target problem areas, but British Standards will require further tightening if they are to keep abreast of the WHO’s more stringent guidelines.
If you operate buildings with ageing gas-fired hot water systems and have concerns about IAQ or wish to reduce carbon emissions as part of a sustainability strategy, speak to Adveco about Live Metering, system assessment and replacement options. Whether looking for high-efficiency, ultra-low emission gas appliances such as AD / ADplus water heaters and MD boilers, or a transition to electric boilers, heat pumps or solar thermal we can help with system assessment, replacement design, supply and ongoing service for more efficient, comfortable and safe working environments.
Read The Adveco September 2023 Newsletter
/in Catering, Education, Health, Hot Water, Hotels, Leisure, Net Zero, News, office buildings, restaurantsWelcome to the Adveco September 2023 newsletter. This month we consider the opportunities solar thermal systems present for both gas-fired and electric water heating systems in commercial buildings. We consider the potential net zero impacts of the forthcoming Future Buildings Standards and the recently introduced EPC ratings on commercial rentals. And are pleased to announce our finalist status in both the Energy Awards and the Heating & Ventilation Review (HVR) Awards…
Read The Adveco August 2023 Newsletter
/in Catering, Education, Health, Hot Water, Hotels, Leisure, Net Zero, News, office buildings, restaurantsWelcome to the Adveco August 2023 newsletter. This month we consider how blending technologies enables commercial properties to achieve greater sustainability of hot water supply. We also track the impact of the Public Sector Decarbonisation Fund as it ushers in phase 3c, new Buffer cylinders for heating projects and get an update on a project to counter limescale in restaurant applications.
Public Sector Decarbonisation Latest Funding Phase
/in Blog, education, Education, Health, healthcare, Hot Water, Leisure, Net ZeroThe UK Public Sector Decarbonisation Scheme (PSDS) is a government-funded program designed to support the UK’s net zero emissions target by 2050 by providing grants to public sector bodies to help them decarbonise their buildings. This is important as most of the buildings in the public sector still rely on burning fossil fuels for heating, hot water, and catering.
Phase 1 and Phase 2 of the PSDS have been successful in helping to decarbonise public sector buildings in the UK. The schemes have awarded over £1.75 billion in grants to over 1,300 public sector bodies, which have helped to decarbonise more than 2,000 public buildings. These projects have resulted in a reduction of more than 1.25 million tonnes of carbon emissions.
Who can use the PSDS?
The scheme is open to a wide range of public sector bodies, and it provides significant financial support for decarbonisation projects. If you are a public sector body that is looking to reduce your carbon emissions, the PSDS is a great option to consider.
The PSDS is open to all public sector bodies, including central government departments, local authorities, schools, hospitals, police forces, fire and rescue services and other public buildings.
The PSDS has been a successful program so far. In Phase 1, which ran from 2020 to 2022, the scheme awarded over £1 billion in grants to more than 1,000 public sector bodies. These grants have helped to decarbonise more than 1,500 public buildings, resulting in a reduction of over 1 million tonnes of carbon emissions.
Phase 2 of the PSDS, which ran from 2021 to 2022, awarded £75 million in grants to a further 300 public sector bodies. These grants have helped to decarbonise more than 500 public buildings, resulting in a reduction of a further 250,000 tonnes of carbon emissions.
Why should public sector bodies apply for funding?
There are a number of reasons why public sector bodies should apply for funding from the PSDS. These include:
- Helps reduce fossil fuel emissions as well as making public buildings more comfortable and cheaper to warm.
- To reduce their carbon emissions and help the UK reach net zero.
- To save money on energy bills.
- To improve the energy efficiency of their buildings.
- To create jobs in the low-carbon economy.
- Gain ongoing client and technical support on project delivery.
Phase 3c of the PSDS
Phase 3 of the Public Sector Decarbonisation Scheme, worth £1.425bn, was launched on behalf of the Department for Energy Security and Net Zero in 2021 to supply grants to public sector bodies over the period 2022 to 2026. Phase 3c of the PSDS was launched this month.
For Phase 3c of the PSDS, an additional financial year of funding has been granted by the Department. This funding increases the value of the overall funding to the scheme and will enable Phase 3c projects to deliver across two financial years.
Phase 3c of the Public Sector Decarbonisation Scheme has up to £230 million available in 2024/25. The budget available in 2025/26 will be confirmed this autumn though applicants should assume a broadly balanced profile across 2024/25 and 2025/26.
The Application Portal for Public Sector Decarbonisation Scheme Phase 3c is expected to open in the autumn and comes with soft sector caps (divided by Health, Education and Other) to ensure a more balanced distribution of funds across sectors.
Applicants can submit separate applications for separate projects or combine several projects for delivery across one or two financial years. Applicants can also include energy efficiency measures and other enabling works, that are additional to the replacement of the fossil fuel heating system, where they support a whole-building approach to decarbonisation.
To apply for Phase 3 funding visit the PSDS website or visit Adveco’s Net Zero resources to understand how funding can be used to support decarbonisation projects that deliver results today. For public sector buildings with gas-fired systems please talk to us about metering your buildings to understand how low-carbon technology can be successfully used to lower carbon emissions without excessively driving up capital funding.
Sink or Basin-led Projects Go Low Carbon
/in Blog, care homes, Education, healthcare, Hot Water, Hotels, Leisure, Net Zero, New Product Pages, office buildings, restaurantsSink or Basin Led Projects Go Low Carbon
For commercial organisations, there is a new pre-sized response to sink or basin-led hot water projects from Adveco. The next-generation FUSION range from Adveco is a complete range of packaged electric and packaged renewable electric water heaters.
FUSION is a modern, future-proof system that embraces electric water heating and the option to incorporate air source heat pumps (ASHP) to lower carbon emissions in line with government calls for net zero. As an all-electric system, it uses familiar technology that is relatively simple and quick to install, cost-effective, reduces carbon emissions and removes dangerous NOₓ emissions for improved indoor air quality (IAQ) for enhanced occupant comfort. With an increased heating capacity over first-generation Adveco FUSION systems of up to 34 kW, the next generation of FUSION systems offers greater versatility for meeting domestic hot water (DHW) demands across a range of properties used for commercial operations. Projects with small to medium sink or and basin-led hot water demands, taller buildings with basement plant rooms and businesses that depend on 24/7 hot water provision for continuity of service all gain advantages from using FUSION.
The packaged format enables flexibility to specify from a range of cylinders, primary electrical heating, air source heat pumps for pre-heat, and immersions for back-up all supported by Adveco’s bespoke controls to ensure optimal, efficient operation. FUSION cylinders (ATSI & ATST) come with dedicated mounting points for the ARDENT electric boiler, simplifying and reducing the chance of installation errors.
By mounting the electric boiler directly to the cylinder FUSION is a more compact, space-saving option when specifying or having to refurbish an existing plant room. The cylinder connections and clean-out plate are all arranged on the front of the tank for easy access when connecting pre-built pipework with a choice of left- or right-hand side connection, and for regular maintenance. This arrangement also enables FUSION to be situated tightly into a corner, again maximising available space. Corrosion-resistant stainless steel construction makes FUSION’s cylinders perfect for either soft or hard water areas. With 10 Bar operating pressure, the ATSI and ATST are more than capable of serving the needs of taller buildings, especially those with existing basement plant rooms.
The use of the 9, 12 or 24 kW ARDENT electric boiler replaces the use of a single immersion for primary heating. Capital costs are not only equivalent, but ARDENT, with multiple immersions inside its sealed storage tank provides automatically balanced usage to prolong system life and immediate resilience for the boiler should there be a failure of one of its immersions. The typical cause of immersion failure in sink or basin-led systems is the creation of limescale in hard water areas, production of which is accelerated by the higher heat intensity of electrical water heating. This is avoided in FUSION, as the ARDENT is used in a sealed ‘primary’ loop to an indirect coil in the system’s cylinder. The ARDENT electric boiler heats the same water continuously so there is only a small, finite amount of scale in the system which will not damage the elements, effectively eliminating damage to the immersions by limescale.
FUSION cylinders offer single (ATSI) and twin-coil (ATST) variants with capacities ranging from 200 to 500 litres. Single coil cylinders (ASTI) are used for standard electric indirect water heating with an ARDENT electric boiler (FUSION-E), and the option of an immersion for resistive heating ‘directly’ to water in the cylinder (FUSION-Eplus).
Dual-coil cylinders (ATST) enable the addition of a 6 or 10 kW FPi32 monobloc air to water heat pump. The ASHP is connected to the lower coil and supplies indirect pre-heat to the vessel, while ARDENT is connected to the upper coil to provide primary indirect heating (FUSION-T & -Tplus). FUSION E systems come with a thermostat and overheat thermostat as standard, but for renewable variants featuring dual-coil ATST cylinders and ASHP, optimisation within the FUSION system comes from Adveco’s purpose-built FUSION Control Box. This smartly balances the two heat sources enabling the water in the cylinder to be heated in the most efficient way. The heat pump’s contribution is maximised, achieving a working pre-heat flow temperature of 50°C under UK weather conditions, even if the ambient air temperature drops as low as -25°C.
With the cylinder water pre-heated by the ASHP, the ARDENT boiler is not required to work as hard to raise flow temperatures to the 65°C demanded by commercial applications. Electrical demand on the boiler is reduced by as much as 30%, delivering operational savings and reducing carbon emissions by up to 71%. This variant is perfect for organisations seeking to invest in a water heating application as part of a decarbonisation strategy without losing sight of higher operational costs associated with all-electric systems compared to equivalent gas-fired water heating.
Where hot water demands become a business-critical service, FUSION will also support the addition of an Adveco backup immersion providing additional resilience. Fitted into the front-facing clean-out access, the immersion ensures there is no single point of failure for assured service provision. When only used as an emergency heating source, or during periods of unplanned excess demand, the inclusion of an electric immersion can be extremely advantageous. For FUSION systems incorporating the additional backup immersion (FUSION FPH-Eplus & FPH-Tplus) controls are further extended to incorporate SMS output to advise building managers of a fault scenario and automated engagement of the immersion back-up to guarantee business-critical hot water supply.
For commercial organisations specifying a sink or basin-led hot water system for new buildings faced with regulatory changes on new gas connections, or planning to move from existing gas-fired systems to electrical alternatives FUSION provides an impressive range of choices whether cost, sustainability or business security are the driving factors for specification.
Low-Carbon Hot Water: A Blended Approach
/in Blog, care homes, Education, education, Health, Hot Water, Hotels, Leisure, Net Zero, office buildings, restaurantsAll Electric ? Sustainability & Water Heating Pt.3
/in Blog, education, Education, Health, healthcare, Hot Water, Hotels, Leisure, Net Zero, office buildings, restaurantsIn this three-part series, Adveco has so far addressed the role of air source heat pumps and solar thermal as a source of low carbon preheat, in this final part, we consider the future of gas and the adaptation to all electric applications for implementing more sustainable hot water in commercial buildings.
Read Part 1 Sustainability & Hot Water – Which Path Is Right For Commercial Properties?
Read part 2 sustainability & Hot Water – Using The Sun
Despite the pressure to address carbon emissions in building stock in the UK, the fact is we are still waiting for clear advice at a government policy level. The final decision on energy solutions remains unresolved. So do you opt to go all electric with equipment now on the basis that the grid will become zero carbon or hold out for the option of carbon-free gas such as Hydrogen, which in terms of infrastructure change and refurbishment would be potentially quicker, cheaper and less disruptive.
As indicated, if your building has a gas connection and has high hot water demands it remains the most cost-effective option. Additionally, new gas-fired appliances operate with ever-reduced emissions, and most are ready to accept the initial proposed 20% hydrogen blends in the gas grid as early as 2024 without requiring any alteration. ‘Hydrogen Ready’ units are, with a replacement of the burner and pre-mixer, even capable of burning 100% hydrogen, but that scenario is some time away. Should hydrogen be accepted by the government as a function of net zero we would not expect 100% feeds to be in place nationally until 2040 with the grid changeover beginning in the early to mid-2030s. Retaining an existing gas connection, therefore, provides a degree of futureproofing should green gas technology be embraced.
What is clear though is that the latest building regulations (Part L, 2021) have radically revised the carbon intensity of electricity from 519g CO/kWh ten years ago to just 136 today. Gas in the same period has fallen from 240 to 233. Whilst the regulations do not yet exclude gas, they do advantage the adoption of all electric systems. We have demonstrated that renewables have a critical role in reducing the carbon emissions of a system, as well as offsetting the costs of heating water with direct electricity.
Gas-based hot water applications are, by a factor of 3.8, currently cheaper to operate than direct grid-electric systems. Using heat pumps can offset 25-35% of those energy costs, but this still leaves a considerable excess operating charge because of the need to provide top-up energy for safe operating temperatures. Historically, additional system top-up was provided by electric immersions, which for backup purposes and occasional peaks in demand whilst more expensive was acceptable. The shift to fully electric systems has put a greater onus on the technology which was never designed to provide primary heat. The costs are excessive and as we indicated, should they be deployed hard water, can rapidly develop scale leading to permanent damage in a remarkably short time. For this reason, we recommend the replacement of immersion technology with smaller electric boilers that are both more efficient, and, because they operate in a closed loop will avoid the issues of systems scaling up.
Perhaps the most detrimental issue we see today as a result of replacing gas with electricity is the propensity to oversize the new all electric system, replacing gas appliances with electric alternatives with like-for-like capabilities. Hot water systems have been inherently oversized in the past through a lack of understanding of application design or concerns over providing suitable backup to ensure system continuity. The result of oversizing is however always the same, unnecessary capital costs for system supply and installation, but when replacing gas with electricity, oversizing leads to greater electrical demand and should that exceed a building’s available amperage of electrical supply, project installation costs will inevitably soar, or even stall the project.
This can best be avoided by understanding your building’s actual hot water demands and designing the replacement to meet those specific needs. There is an art to designing hot water systems, but real, actionable data is priceless. When considering options for introducing sustainability the best advice we can give is to understand your needs first. Live metering is an easy, non-intrusive way of securing the valuable operational data you need to make informed decisions that deliver on expectations to lower carbon emissions without incurring unforeseen costs.