2021 – Adapting to new technologies and approaches

The UK’s construction industry is familiar with adapting to new technologies and approaches to provide the latest and most efficient responses for creating better buildings.  2020, however, was unprecedented, but what does this mean for 2021? Looking forward, key trends within the industry include Covid-19 care, greener response sand efficient use of property space.

Coronavirus has attacked every corner of the UK, impacting the majority of businesses and therefore the wider economy. Despite vaccines, Covid-19 is now something we all must learn to live with, it has accelerated change and requires a re-evaluation of how buildings are conceived and used. As a specialist in the provision of commercial heating and especially hot water, Adveco is well versed in the design of systems to support the maintenance of hygiene within their buildings, critical for the ongoing prevention of the spread of Covid-19. There has never been a greater need for access to wash stations. Scientists have proven washing hand in warm, soapy waters for more than 20 seconds can reduce the spread of Coronavirus more efficiently than hand sanitisers. Additionally, hot water (at a minimum of 60°C) needs to be readily available for cleansing of materials and surfaces to prevent the spread further. With these requirements comes a need for more efficient systems capable of meeting these increased demands to be incorporated into commercial buildings. With the demands of maintaining a safe two-metre distance, space has become even more valuable. The hospitality sector is already struggling with the challenge of balancing revenue losses from reduced covers and are looking at how to create alfresco spaces to adapt to this new normal. Packaged plant rooms offer companies a means to use minimal space whilst still maximising efficient systems, freeing up valuable internal spaces or making use of dead spaces which are not customer friendly. This is also a fast, relatively low impact method for refurbishing hot water systems.

Despite all the chaos of Covid-19, it also brought into razor-sharp focus the effects of pollution. This was all too obvious when the world stopped for a moment and the effects of pollution decreased and allowed the environment to thrive. It proved to be a rallying cry for decarbonisation in 2020 and will continue to create headlines throughout 2021 and beyond. It remains a core focus for the construction and HVAC industry that will continue to strongly push for more wide-reaching frameworks to deliver eco-friendly technology and buildings to meet the challenging goal of achieving Net Zero by 2050.

Through exclusive technical partnerships and our in-house design function, Adveco can quickly adapt to these changing needs and help innovate products and systems to directly address the evolving challenges of decarbonising commercial buildings. We recognise that there is no single technology that delivers the entire answer, but there is no doubt Air Source Heat Pumps (ASHP) will play an important part, as will new green gas technologies towards the end of the decade.  This makes hybrid system approaches all the more valid for supporting the near-term transition of commercial organisations to a more sustainable track that reduces their building emissions and operational costs.

The Adveco 2021 Product Guide Now Available

Hot water and heating specialist Adveco, has published its latest Product Guide for 2021 (PDF). This handy booklet provides a complete overview of Adveco’s current portfolio of commercial hot water and heating products. With the Government’s pledge to deliver net-zero by 2050, the commercial sector faces an increasing challenge to address the carbon emissions from buildings. The recent sixth Carbon Budget put the scale of the challenge into perspective, calling for a 78% reduction in carbon emissions by 2035 if we as a nation are to meet this long-term net-zero commitment.

Whether planning a new build or refurbishing existing buildings, Adveco provides a broad choice of appliances, controls and ancillaries for the design and manufacture of bespoke applications. Supporting the drive to a more sustainable future, Adveco offers an ever-expanding range of renewables; from its long-term provision of solar thermal systems to award-winning boxed Heat Recovery Units, and the latest commercial-grade air source heat pumps.

Wherever a project is located, Adveco can support with the optimal technology; from glass-lined water heaters for hard water areas to corrosion-resistant stainless-steel alternatives for soft water conditions, and renewables that address the limitations of regional climates.

With access to the latest hot water and heating technology, we can ensure your application is provisioned with highly efficient, low-emission appliances, that offer the highest quality, robust construction to ensure longevity and best value investment.

The Adveco 2021 Product Guide provides an easy reference for a range of boilers, buffers and thermal stores for heating projects. It also incorporates the A.O. Smith range of condensing gas and electric water heaters, all supported by Adveco calorifiers, plate heat exchangers and immersions for hot water systems. Also discover the advantages of Adveco offsite construction, providing complete prefabricated plant rooms for heating and hot water systems.

All Adveco’s products are supported by 50 years of industry expertise as the independent provider of application and system design, bespoke manufacture and aftersales service and support. All supplied at a quality only a specialist manufacturer can deliver.

Download the brochure today

UK Needs to Cut Emissions by 78% by 2035 to Meet Net-zero

Under the original Climate Change Act, the UK pledged to cut net emissions by 80% by 2050. Now, it will need to deliver a 78% reduction by 2035 if it is to meet its long-term net-zero commitment. That is according to the Climate Change Committee (CCC), which has published its Sixth Carbon Budget for the period between 2033 and 2037.

The CCC described the budget as the toughest yet with chief executive Chris Stark saying that the UK will need to decarbonise at a faster pace in the next 30 years if the net-zero target is to be met. Stark explained that the Committee has deliberately opted to ‘front-load’ decarbonisation – more will need to happen in the 2020s and the earlier half of the Sixth Carbon Budget period than in the latter half and the 2040s. Heat, and the broader decarbonisation of buildings, is one of the major priorities identified by the CCC which has based its calculations on a scenario in which 40% of the emissions reductions needed will be delivered using pure-technology solutions.

The new recommendations will see heat supply drastically transformed from its current reliance on natural gas if the country is to decarbonise all aspects of the UK’s infrastructure and economy. The budget has set a mandate for fossil fuel boiler installations to end across the UK entirely from 2033, with fossil fuels phased-out from heating in public buildings by 2025 and in commercial buildings by the following year. It added that these stricter targets to phase out higher-carbon technologies in public buildings would also support a government aim of realising a 50% reduction in emissions by 2032. The 2033 date has been set to take account of the typical 15-year turnover of boiler stock, while also allowing for the scaling-up of supply chains to deploy heat pumps at a mass scale.

The recommendations aim for 37 per cent of public and commercial heat demand to be met by lower-carbon sources as of 2030.  According to the CCC, heat pumps should cater for 65% of the predicted need, 32% of heat should be provided by district heating systems, whether low or high-temperature supply, with a further 3% from biomass by the end of the current decade. By 2050, CCC estimates that 52% of heat demand should be met by heat pumps, 42% from district heat, with hydrogen boilers covering the remaining 5% of national demand.

One caveat, however, was that since the dates operate alongside the deployment of low-carbon heat networks and planned regional rollouts of hydrogen conversion of the gas grid, the phase-out outlined may not apply in any areas designated for these alternatives. This makes a nod to a net-zero that derives balance between pure hydrogen systems and electrification, both delivering decarbonisation of heating. It also highlights the danger of supporting one technology and ignoring another when the pace of development is so much steeper and will continue to be so as we move towards 2050. To this end, the CCC is using what it describes as a ‘balanced pathway’ scenario upon which to base its calculations and that its delivery will require ‘systems change’ and a ‘whole economy approach’ to decisively meet the UK’s legal target of fully eliminating and offsetting carbon emissions by 2050.  Under this ‘decisive’ decarbonisation plan, the CCC has warned that a sizable majority of change must be made within 15 years.


Adveco.Talk to Adveco about how we can help you create more sustainable heating and hot water applications for your buildings.

Space To Develop Hot Water & Heating

Space To Develop Hot Water & Heating

How relocating heating and hot water systems in commercial buildings can drive real value from underutilised space…

The most valuable asset any business or organisation has is space, space to grow, develop and drive advantage. Within the built environment the drive for more space is a balancing act between granting applicable and preferably comfortable space for those using the building and meeting the infrastructural and systemic needs of operating the building.

There typically has to be some kind of give in the drive for creating or freeing up useable space if that activity impacts on the necessary systems, in particular heating, cooling, lighting and water.

Hotels are a great example of this drive to reclaim usable space. The hospitality industry is one of the most competitive there is. Hotels are continually fighting with the competition to offer the most affordable rates, the best amenities, and the most outstanding guest services — all while also making a profit. The easiest way to charge more for a room is by adding space to it, or by adding more rooms in total. Either way that is going to help improve the bottom line. The same goes for restaurants, where maximising floor space means more tables. Whilst hoteliers and restaurateurs will look to every square centimetre of their properties for opportunities to maximise revenue, other organisations will have very different drivers. Consider schools, where larger class sizes have increasingly driven a demand for teaching space. How many schools have had to surrender playing fields to locate portacabin style classrooms which are obviously not ideal?

This brings us to the kinds of underutilised or wasted ‘dead’ space in and around buildings. Internal space is potentially incredibly valuable, so leveraging external space to free it up can be truly advantageous. The question is what can be given up to makes such gains? The simple answer might be your HVAC plant.

Plant rooms, or boiler houses as they were known, vary from purpose-built to jury-rigged spaces used to accommodate heating and hot water systems. Basements are typically repurposed in older commercial buildings, whilst it is not unusual to find them tucked in amongst other rooms creating a mixed-use setting. Wouldn’t it be advantageous to separate such building services and relocate them away from those using the building whilst improving the efficiency of the system for a host of benefits including lower operational costs and reduced emissions?

Simply upgrading to a new gas condensing boiler or electric water heater can deliver notable efficiency improvements over models from just 10 years ago, and today’s modern appliances pack that into much more compact, space-saving formats. So, you could gain greater capability from a smaller footprint in your plant room, and potentially reclaim a few square meters. But what if you could reclaim the entire plant room?

Refurbishing plant to a new location may sound drastic, but that needn’t be the case. Increasingly the construction industry has embraced the idea of offsite construction, creating modular units or systems that are pre-installed and ready for relatively quick and simple connection once delivered to a site. The process streamlines a construction programme along with offering numerous savings as site work is dramatically sped up. Now, this process can be as easily applied to refurbishment projects as it is to new build. All you need is an underutilised space. For many commercial buildings that means flat roofs, yards or car parks, spaces that are inexpensive to adapt, require low to no maintenance and have either been ignored or are underused.

With the proliferation of car ownership, it might at first seem unlikely that the car park is being underused. But the drive to encourage walking, cycling and car-sharing has had an impact, and developers who have previously pushed for more open parking space than ever before are now being challenged to repurpose some of that space. In terms of Identifying functional opportunities to better leverage this space, the siting of plant fits the bill. Turing over just one or two car spaces can have a dramatic impact on the capability of heating system, providing enough square meterage to easily accommodate a mid-sized packaged plant room offering, for example, a boiler cascade and heat exchanger assembly. Or the space could be used to locate Air Source Heat Pumps (ASHP) that drive system sustainability whilst lowering CO2 emissions.

Relocation to flat rooftops is especially valuable. This is truly ‘dead space’ for most buildings, but it provides a broad opportunity to relocate heating and hot water plant safely and more securely. A simple crane lift is all it takes to locate a prefabricated plant room, and these can be of considerable size and complexity should the roof space be large enough to accommodate. Additionally, the space lends itself to locating hybrid systems that integrate renewable and sustainable technologies. We have already mentioned the use of ASHPs, and a rooftop placement not only typically supplies unimpeded airflow, the noise, though relatively low, now becomes almost unnoticeable to those on the ground.

Flat roofs are also perfect for the installation of solar thermal systems, where a framework is constructed to align the collectors for optimal energy collection. That energy is then transferred to the building’s water system. One of the biggest threats to the efficiency of a solar thermal system is the heat loss between the collector and hot water storage, which results from potentially long pipe runs from the roof to the plant room. By locating the plant room on the roof, pipe run is minimised as are thermal losses, so you get more energy for your investment.

These are just a few examples of where Adveco’s application design, system prefabrication and expertise in hybrid and renewable technology can help maximise underutilised space. Modern, high-efficiency systems deliver new versatility for addressing changing demands of the building whilst still reducing operational expenditure on energy and helping drive actual sustainability within an organisation.

If your business or organisation is looking to

Talk to us today or read more about our renewables and packaged plant room systems.

Adveco L70 Air Source Heat Pump (ASHP).

Adveco L70 ASHP For Hot Water With 70% Less CO₂

  • 90 kW maximum output for hybrid domestic hot water and heating
  • Specifically designed for the UK climate (-20°C to +35°C)
  • Reduce CO₂ by as much as 70% compared to gas-fired systems

Nov 9th 2020 Commercial hot water and heating specialist Adveco extends its range of commercial air source heat pumps (ASHP) with the introduction of the Adveco L70. This high-capacity air-to-water monobloc heat pump is designed for the UK climate providing hybrid domestic hot water (DHW) and heating.

Bill Sinclair, technical director, Adveco said:

“In conjunction with Adveco’s bespoke application design, the L70 offers a comprehensive response for sustainable heating and hot water, providing high-efficiency, low-emission, low cost to operate systems for the life of a commercial building.”

Rated 70kW for typical UK operation at 5°C but climbing to a maximum 90 kW from a single compact unit, and with a seasonal coefficient of performance (SCOP) as high as 4.08 the L70 is perfect for large scale commercial applications and can operate as part of a cascade installation for projects demanding greater capacity. The L70’s dual compressor configuration allows for staged start-up to limit current draw and gives the flexibility to drop to half output under low load conditions.

With ASHPs offering greater efficiencies in low-temperature systems, the high-temperature demands of commercial DHW applications can be a challenge. Achieving working flow temperatures up to 60°C, the L70 supplies preheat for hybrid applications composed of combinations of plate heat exchangers, buffer vessel, with calorifiers, gas-fired boilers or direct-electric water heating providing essential additional heat to meet commercial requirements.

The L70 will dramatically lower CO₂ when analysed using the carbon intensity figures from the new SAP10.  Compared to gas-based systems the carbon emissions are reduced by around 70%, when using the SCOP of 3.47 measured at 55°C flow temperature (Ecodesign warm European temperature zone with a reference design temperature of 2°C).

The L70 remains eligible for applications for the non-domestic Renewable Heat Incentive (RHI) until March 2022 and is ideal for projects applying to the Government’s Public Sector Decarbonisation Fund to drive energy efficiency.

Additional information: L70 ASHP

Adveco L70 Air Source Heat Pump (ASHP).

  • Dual refrigerant circuits with smart control and built-in remote monitoring system.
  • COP 3.65 (7°C ambient) to 2.83 (-10°C ambient) at 35°C water temperature.
  • Maximum working temperature/ambient air -20°C to +35°C
  • Automatic reverse cycle for built-in frost protection.
  • Maximum working temperature range /waterside 25 to 60°C
  • Noise level 51.6 dB(A) (sound pressure at 10m).
  • W2180mm H2100mm D1070mm.
  • Dry mass 900kg.
Making ASHP Work For Commercial Applications – Part 2.

Making ASHP Work For Commercial Applications – Part 2

The Hybrid Approach

In part one, we considered the challenges and limitations of an Air Source Heat Pump (ASHP) only system, with particular focus on the problems commercial organisations faced when retrofitting existing properties with new heating and hot water applications. In this concluding part, we look at the advantages of adopting a hybrid system approach based on ASHP technology…

A hybrid approach where an ASHP is deployed in a packaged combination with a gas boiler and control system presents an attractive alternative, retaining the element of gas boiler technology that customers are comfortable with. Plus, it also offers better compatibility with existing heating distribution systems and thermal demands of higher heat loss buildings meaning less adaptation is required. There are also technical advantages, such as the ability to optimise heat pump efficiency and switching to the gas boiler at times of network peak.

The facility of two heat sources to meet the demands for space heating and/or hot water is especially relevant for the commercial sector where bespoke system design is often required to meet the particular needs of a project, such as applications with a high heat loss. In this case, the gas boiler can be operated to meet peak demands on the coldest days, allowing the heat pump to be reduced in size compared to the capacity of a pure electric heat pump system.

Installing a heat pump alongside an existing gas boiler, together with a control system also makes sense in retrofit installations, especially, in applications where a relatively new boiler has been installed, which should be highly efficient, and which can be retained for peak heating loads. The key challenge technically is to ensure that the control system for the ASHP and existing boiler operate together efficiently.

In such cases, given that the ASHP does not replace an existing heating system, the driver for installing the system is largely to reduce running costs and make quick gains towards improving environmental performance.

Hybrid systems based around an ASHP are likely to require some system refurbishment in many retrofit installations in order to ensure that a substantial proportion of the annual demand is met by the heat pump (though this is likely to be lower than a pure electric system). Even so, when including the cost of a gas boiler replacement, the cost of refurbishing heating systems for the installation of a hybrid system should be lower than in the case of a single heat pump system. This is due to the reduced heat pump capacity requirement since the boiler can provide higher flow temperatures to meet peak heat demands. When comparing the cost of a heating system refurbishment opting to install a hybrid system versus a ‘pure’ ASHP system a reduction in comparative costs of as much as 50% could be achieved (Source: Frontier Economics).

Once installed, levels of carbon savings are generally slightly higher when allowing for hybrid solutions – suggesting that up until 2030 hybrid solutions could be consistent with meeting carbon targets. Although the average cost-effectiveness of carbon abatement is somewhat lower than in the scenarios which exclude hybrids. These savings are estimated based on comparison with a standalone ASHP, assuming that a hybrid system will use a smaller heat pump with a capacity reduced by as much as one third. For a hybrid ASHP system, expectations will be for the heat pump to meet as much as 75% of the annual heat load, the remainder being met by a gas boiler. This delivers similar operating costs and comparable CO and CO₂ savings at current grid carbon intensity (the reduced heat pump coverage of the overall thermal demand can be compensated by the ability to run the heat pump at closer to optimum efficiency).

Whilst the long-term use of hybrid systems may be perceived as not fully consistent with meeting carbon targets and they can equally be limited by space requirements and noise issues that also affect standalone ASHP installation, there remains a strong argument for their use across the commercial sector.

In the long term, hybrid systems should fall behind pure electric systems in terms of carbon benefits as the grid decarbonises and may become less cost-effective if volumes of gas supplied for the heating drop. But looking out to 2050, innovations in the provision of hydrogen and green gas, using extant infrastructure which currently supports 85% of UK heating, means hybrid systems may prove to be a defining low carbon option. One that provides the means to support the very particular, practical needs of the commercial market with versatile, cost-effective systems, all without sacrificing the drive to lower emissions as part of the process of achieving net-zero.


Adveco.Read about Adveco’s compact commercial FPi ASHP range and prefabricated packaged systems for a hybrid approach.

For further information contact Adveco.

Making Air Source Heat Pumps (ASHP) Work For Commercial Applications - Part 1

Making ASHP Work For Commercial Applications – Part 1

Understanding the Challenge of Air Source Heat Pumps (ASHP)

Commercial organisations face a somewhat unfair challenge as they are held by the Government to be leaders in the move to control and reduce carbon to achieve net-zero by 2050, yet are limited by the technology options that the Government is showing active support for. The current drive, without a doubt is to push Air Source Heat Pumps (ASHP) to the exclusion of other technologies. Neither high-efficiency gas boilers with ultra-low emissions nor proven sustainable systems such as solar thermal have received much love in the latest round of grants supporting the commercial sector. In particular, the decision not to provide support for those opting for hybrid solutions that bridge the technology gap in the most cost-effective manner shows a focus on the finish line, but a failure to grasp the actual challenges the commercial sector faces right now. So, what are the options with ASHPs, and what is a realistic path to take today?

Unfortunately, we cannot control the weather, but despite that, ASHP technology does still present an opportunity to significantly improve the efficiency of buildings across the commercial sector. Because an Air Source Heat Pump is reliant on the ambient air, the Coefficient of Performance, or COP, is going to be affected by both the source and supply temperatures. The heat provided is at a much lower temperature, so a heating system will be required to operate at low temperature for optimum efficiency and may have to be kept on for a longer period to be fully effective. Such a system could well require a significant upgrade to a building’s electrical supply and heating infrastructure. However, to maximise the ASHP efficiency, the lowest possible flow temperature needs to be achieved, and that requires a building to be highly efficient in terms of heat loss. When working with new builds, the ability to drive high efficiency in the thermal performance of the fabric of a structure means a well-designed commercial heat pump system is more than capable of providing all the heating needs for a business and, in the long term, represent good value for money in savings from reduced energy bills, as well as helping commercial premises bring down that all-important carbon footprint.

But in isolation, this demand for low heating temperatures and low water usage will be impractical for many businesses, especially when retrofitting a property, which can highlight the limitations of ‘pure’ ASHP systems. This becomes particularly obvious when ASHP is to be deployed for the provision of hot water, especially if there is a large daily demand. Domestically we would expect a minimum storage temperature of 50oC, but this rises to 60oC minimum for commercial environments. This has a considerable impact on the ASHP’s running efficiency and therefore the running costs. Additionally, by generating hot water at 50oC and not 70oC, the storage volume will have to be considerably larger than that associated with a typical gas boiler. To achieve necessary water temperatures requires greater considerations of space planning and type of hot water cylinder the system will require.

With early to market performance of heat pumps falling below expectations, and a higher capital cost relative to the conventional gas boiler alternative the uptake of ASHP in commercial business on the gas grid had, until the drive to achieve net-zero, been limited. Now commercial operations are actively seeking to use ASHP, but are still running up against these same issues, which is why, with the current capabilities of ASHP technology, a hybrid approach for commercial applications remains attractive. Both in terms of installation and operation, whilst still gaining the all-important running cost savings and reduced carbon emissions.

In part 2 we explore how a hybrid approach can deliver significant value from ASHP technology

Read about Adveco’s compact commercial FPi ASHP range

Adveco’s Packaged e-Hot Water System Named Finalist in 2020 HVR Awards.

Adveco’s Packaged e-Hot Water System Named Finalist in 2020 HVR Awards

  • Named finalist in the HVR 2020 Commercial Heating Product of the Year.
  • Reduce operational costs by offsetting up to 70% of the energy required by equivalent sized systems. Dramatically reduces CO emissions.
  • Unique low heat intensity specification reduces the threat of scale formation.

Adveco is proud to announce it has once again been named finalist in the Heating & Ventilation Review (HVR) Awards.  Named finalist in the 2020 Commercial Heating Product of the Year category, the Packaged e-Hot Water System from Adveco offers commercial businesses with large hot water demands but space limitations a complete, pre-sized highly-efficient, low carbon response.

The HVR Awards celebrate the products, brands, businesses and people that have led the way with their innovation and unrivalled levels of excellence, inducting them into the prestigious HVR Awards ‘Hall of Flame’.

“It is fantastic to see our Packaged e-Hot Water System be recognised in this way,”

said David O’Sullivan, managing director, Adveco.

“We are very proud of this product which brings together every aspect of our business, unifying our application design, product expertise and site services to provide a sustainable, future-proof product that is a robust, efficient and cost-effective way to secure hot water for a myriad of commercial applications.”

Adveco’s Packaged E-Hot Water System makes full use of the FPi-9 ASHP to provide the system preheat from 10°C to 50°C, supplying 70% of the DHW load. Offsetting 70% of the energy requirement means the Packaged e-Hot Water System can demonstrate a 47% reduction in energy demands and CO₂ emissions for the same output of 500,000 litres of hot water each year when compared with a similar direct electric-only system. The reduced energy demand also means operational savings can be added to the capital savings secured during the design, supply, and installation phases.

The system is also ground-breaking in the application of a completely new specification that lowers the heat intensity, without detrimental effect to the demands for hot water, meaning the Packaged e-Hot Water System is also more resistant to scale, reducing maintenance demands.

“The vision for, and execution to market of the Packaged e-Hot Water System has been a real team effort,”

adds David.

“Being named finalist once again in the HVR awards demonstrates the advantages of Adveco’s independent approach to innovation, ensuring customers have the very best system response to their need for low carbon, cost-effective applications as we all work to achieve net-zero.”

Adveco packaged plant room.

Packaged Plant Rooms – A New Paradigm for Site Safety

Adveco discusses how off-site construction techniques for commercial heating and hot water can alleviate pressures of cost and timescale on construction sites whilst also helping improve Covid-19 safety precautions…

There is no doubt that we are going to face long term changes in the way construction projects operate during and in the wake of the current Covid-19 pandemic. Worksites are already having to adhere to stricter policy on where and when workers can traverse and engage on-site, and, in accordance with Government recommendations, the responsibility for their safety lies squarely on the shoulders of the host – not only for incumbent staff but also for any visiting contractors or customers. Ultimately this is all to ensure anyone on site does not become compromised. This means further stretching the usually difficult, and therefore costly, co-ordination of equipment and controls installations required for a building. Such complexity is typical, for instance, when creating and installing modern heating and hot water applications.

New world, new approach

Adopting offsite pre-fabrication as part of your project is therefore highly advantageous, reducing time on site required of specialist contractors, which is both more cost-effective and safer for all involved.

Adveco combines deep engineering understanding with a wide prod­uct offering and experience in full system design to provide a single source of supply for the delivery of complete packaged plant rooms containing heating and hot water systems tailored precisely to fit the specific needs of a project.

All work is carried out in a controlled, purpose-made environment. This means should there be any forced downtime on-site due to a local lockdown, the assembly work at Adveco will continue as planned. With no distractions from other typical construction site activities or issue we can ensure your plant room work is more rapidly progressed and, with a controlled factory environment, optimal manufacturing conditions are provided for quality control. Unlike the general conditions found on a construction site.

Locating all production work offsite also means the plant room element of a project can also efficiently progress at the same time as other groundworks or site installations. As the plant room arrives with all appliances, controls and ancillaries pre-fitted and connected – using stainless steel (heating) or copper (DHW) crimp pipework – as standard, there is no need for extended plumbing and electrical installation. This helps drastically reduce on-site labour demands and allows for more rapid progression of project timescales, despite social distancing requirements.

To achieve the best results, you will need to finalise facets of decision-making relating to hot water, heating or cogeneration of power early on in the project to allow for increased lead-in times. Once production commences it becomes more difficult to accommodate changes to a bespoke pre-fabricated system. This is why Adveco’s expert design engineers will work closely from the start with your project team to accurately size and design a system that meets the exact needs of the project on day of delivery.  All that is required is for flues, external pipework and final electrical connections to be completed on-site.

Adveco has broad experience of developing small to very large packaged plant rooms, embracing a wide range of cost-effective to operate and renewable technologies, from high-efficiency gas and electric boilers and water heaters to heat recovery units, micro CHP, solar thermal and Air Source Heat Pumps (ASHPs). These are all brought together to deliver a wide range of bespoke applications that can transform the operational nature of a commercial property, reducing emissions and improving the efficiency of hot water and heating for lower ongoing costs. The fact that these systems can also be delivered in a manner that is also much safer for all involved on-site shows the tremendous advantages to be gained from this approach.

Discover more about Adveco’s Packaged Plant Rooms

Bromsgrove Leisure Centre.

Sustainable Energy For The Leisure Industry – Part 2

In part 1 we discussed the importance of understanding how hot water, heating and power demands can be cost-effectively brought into balance, and why hybrid systems are key to achieving long-term sustainability…

As well as being able to be cost-effectively controlled, a hybrid system can also be optimised for CO₂ emissions by selecting the optimal (ecological) heat generator whenever possible via an energy management system incorporating smart metering. Should the building envelope subsequently be renovated, the required heating load will decrease further, and the existing gas boiler can take on less of the annual heating work and eventually could even be retired.

Depending on a building’s demand, we can also make a strong case for combined heat and power (CHP) where the CHP generates onsite electricity from a gas-powered engine, efficiently recovering heat from the process. Such an approach will still offer some carbon savings, definitely cost savings and, if that CHP is a low nitrogen oxides (NOₓ) micro appliance (m-CHP) when compared to the boiler, then we also have NOₓ saving. At worst, such a system is going to be carbon neutral but crucially low NOₓ which is increasingly a requirement for consultants and specifiers to pass building planning.

m-CHP also benefits from inclusion in the new SEG legislation so excess generated electricity can be sold to offset the CAPEX. The addition of m-CHP does require a certain level of oversight, so it is important to factor in the costs of regularly monitoring, managing and maintaining the system to ensure long term guaranteed efficiencies and relatively rapid ROI. As a result, compact micro-CHP systems have proven to be an extremely popular option across the leisure industry.

Adveco recently supplied Travelodge’s flagship 395-room London City hotel with a system that features an Adveco TOTEM T25 m-CHP unit. With continual background electrical power use and large domestic hot water (DHW) demand, Travelodge committed to a system based on micro-combined heat and power (m-CHP) which, when compared to conventional hot water solutions, attains substantial improvements in energy efficiency and reduced emissions.

Beautifully designed and fitted boiler room with mCHP, calorifiers etc.

The m-CHP pre-heats the system water via an MSS buffer vessel, which feeds six stainless steel calorifiers supported by a 572 kW A.O. Smith Upsilon boiler cascade. These plant components, all supplied by Adveco were installed into a rooftop plant room and commissioned by Adveco’s in-house team of engineers. m-CHP proved the most practical and cost-effective method for Travelodge to satisfy Part L of the Building Regulations, aiding its demand for sustainable and energy-efficient building design. And, with Totem’s NOₓ emissions at less than 10 mg/kWh, Travelodge is able to significantly reduce the building’s emissions of NOₓ, a potentially deadly polluting gas that is increasingly driving decision making for consultants dealing with projects located in highly urbanised areas.

Recently highlighted for its sustainability in industry awards, Adveco’s m-CHP application was also used by Bromsgrove Sport and Leisure Centre. Operated by Everyone Active, this was part of a large new build project designed to meet strict building and environmental standards. The new £10.3m facility providing a range of services to the local community including two swimming pools, sports hall and climbing wall, a 100-station gym, a fully-featured spa, and a café. With the pools and associated year-round heat demand, the leisure centre required a high-performance heating system.

To achieve the high level of energy efficiency to serve the building’s heating system required a 25kWe, 57kWTh TOTEM T25 -CHP appliance, as well as a bespoke 3000-litre buffer vessel, controls and ancillaries. Adveco additionally supplied two A.O. Smith BFC120 condensing water heaters to serve the domestic hot water supply to the leisure centre.

Since commissioning in early 2018, the TOTEM T25 at Bromsgrove Leisure Centre achieves 7,000 operational hours a year for an annual saving of as much as £10,000.  By producing both electricity and heat from the same supply of input fuel, the associated net reduction in carbon emissions has been more than 65,000 kg per year.

For leisure projects, high-efficiency condensing boilers and gas-powered m-CHP continue to offer considerable economic advantages in terms of operational costs for built assets. They also remain a realistic and effective means of meeting the demands for improved sustainability, which can be greatly enhanced by combining these technologies with other renewables. Whilst a gas/hybrid approach may be perceived as more conservative, it offers a route to a more sustainable future without removing potentially necessary and therefore valuable energy infrastructure which would be needed to support the introduction of green gas with its lower carbon footprint. Critically, a hybrid approach helps to plan for the future without being prohibitively costly.

Read more about the project at Bromsgrove Leisure Centre

Watch our video on the advantages of micro CHP for commercial buildings