Search

Getting Started With Sustainable Hot Water Systems

Woman's hands washing in water in public washroom

Adveco offers some advice on introducing sustainable hot water systems into commercial buildings… To help achieve climate-neutral building stock by 2050 UK businesses are being challenged to reduce operational energy use. By increasing the use of renewable energy supply and prioritising on-site renewable energy sources the hope is to reduce harmful carbon emissions and improve the management of operational costs.  No doubt being more sustainable comes at a cost. Whether in the form of new build projects or the refurbishment of existing, yet ageing facilities, understanding the necessary capital investment, operational savings and payback periods is key to developing a realistic sustainability strategy. Starting the Journey with Hot Water Because of the ubiquitous need for hot water systems, from basins to baths and showers, catering and cleaning, addressing how this often business-critical resource is secured is one of the quickest, easiest and most impactful ways of making active carbon savings today.   Addressing the efficiency of domestic hot water systems (DWH) – whether through the implementation of heat pumps, solar thermal, direct electric water heating or even simple modernisation of existing gas appliances – helps properties meet sustainability goals practically and cost-effectively. It also delivers improved year-round conditions for customers and staff, providing spaces better suited to delivering quality services. For buildings already on gas and relying on large amounts of DHW, silent solar thermal preheat is preferable. For new build properties, the expectation is for specification to default to a mixture of heat pumps and electric boiler for afterheat. New system approaches, including prefabricated packaged plant rooms, also provide for better use of the spaces that already exist, without the need to undertake expensive and disruptive building projects. Don’t Plan Blind Whether designing new, or refurbishing existing hot water systems heating every building is different. So before embarking on any renovation work or transitioning from gas to electric, we recommend investing in non-invasive water metering. With accurate data comes better design, reducing capital investment, avoiding pitfalls of new technology and offering clear sight of future operational costs for improved strategic sustainability planning. Talk to Adveco about the design, supply, and service of low-carbon water heating for commercial properties.

Restaurant Virtually Eliminates Limescale With Electric Water Heating Application

Restaurant virtually eliminates limescale with a commercial electric water heating application

Commercial hot water specialist Adveco has demonstrated how a restaurant virtually eliminates limescale from its hot water application to ensure business-critical daily operation. Adveco is working in partnership with a global restaurant brand to support the rollout of net zero restaurants demonstrating low-emission innovations throughout its chain of UK drive-through and high street franchises. Through the application of live metering, Adveco has demonstrated to the customer that servicing domestic hot water (DHW) water demands of between 1200-1500 litres per day could equate to as much as 20% of total energy usage within the organisation’s target net zero restaurants. One year ago, the refurbishment of a restaurant in the King’s Cross area of London provided an opportunity to address the emissions generated by this provision of hot water for the restaurant. In addition, working within existing building limits meant the application needed to maximise limited external and plant room space of this central London location. The location also previously had struggled with problems of limescale due to the hardness of the water supply, so creating an application which eliminates limescale was key. Working to an all-electric specification, Adveco designed an application that would harness its’ 9kW FPi32 air source heat pump (ASHP) for preheat with additional top-up heat supplied by an ARDENT P 12kW commercial electric boiler. These would supply thermal energy to a mains water-fed compact SST500 stainless steel twin-coil indirect cylinder. By combining ASHP and an electric boiler Adveco addressed many of the complexities associated with integrating ASHPs into the existing building. This combination enabled the system to be sized down, by as much as half in terms of ASHP requirements delivering immediate capital savings as electric boilers are far less expensive compared to an equivalent heat pump. It also immediately reduced the physical size of the system, embodied carbon and demand from the electric supply. Additionally, the system retains redundancy should there ever be a failure. Balancing a hybrid electric system is key to ensuring efficient operation. Adveco supplied the controls to ensure the water heating remained consistent, optimising the ASHP preheat and top-up from the boiler to reduce energy demands and the building’s emissions. The electric boiler operates at the same efficiency as an electric immersion heater (100%) and so the only overall difference in system efficiency is the minimal pump electrical consumption and a negligible amount of heat loss in the pipework. Although the system takes up a little more space than an all-in-one electric cylinder, it has more versatility. It requires less clearance for the cylinder, so it was compact enough to fit into the extremely limited space allowed for plant in the restaurant. The customer’s key concern was the system resilience, particularly with regards to damaging limescale build-up which is a serious and potentially expensive problem for commercial hot water systems installed in hard water areas. London is one area that particularly suffers from this issue, with unprotected commercial systems known to incur irreparable damage to immersions and cylinders. Adveco ran some initial tests at the location including use of a direct immersion. Immersions are designed for use as a secondary heat source preferably acting as an emergency back-up should there be a failure in the primary system, but we are seeing more specifications with them used as a primary heat source as buildings shift away from gas to electric as a low-carbon alternative. This is not recommended. On this occasion, the test immersion was used constantly for a week to supply heat. The high heat intensity of the immersion, even during this short period of time, demonstrated excessive levels of limescale deposition on the heating element. When limescale forms and remains on the heat transfer surface, because it is non-conductive, the surface becomes insulated leading to overheating of the element. Over time this will cause it to rupture if the heat cannot be dissipated. Under these monitored conditions the lifespan of the immersion was estimated to be a matter of months, yet their cost is not too dissimilar to that of the ARDENT electric boiler. A move to electric that still eliminates limescale… An advantage of incorporating the ARDENT electric boiler was that it heats water using an array of smaller immersion heaters located in a small tank within the boiler housing rather than directly installed into the hot water tank. This creates a sealed ‘primary’ loop to the indirect coil in the SST500 cylinder. The electric boiler heats the same water continuously so there is only a small, finite amount of scale in the system which will not damage the elements. The heat exchanger in the cylinder is a large coil operating at a relatively low (80°C) temperature. The intent was by controlling temperatures and employing an indirect method of water heating the system the common problems of destructive limescale build-up seen in direct immersion electric heating would be eliminated. One year on from the commissioning of the system, the first annual warranty servicing demonstrated the efficacy of this approach. Upon removal of the coil from the SST500 for inspection it was clear that limescale deposition had been minimised. What little limescale which had deposited on the coil surface over the year could be easily wiped from the surface, before placing back into the cylinder. With the cylinder forming significantly less scale, the restaurant has gained from vastly improved reliability while reducing maintenance demands, for both operational and maintenance savings on top of crucial emission reductions. Visit the Adveco restaurant resource for more guidance on delivering low carbon and renewables to help achieve net zero restaurants by 2050, or read our free brochure. Also read our handbook (PDF) for further information on the application of electric hot water that eliminates limescale.

All Electric ? Sustainability & Water Heating Pt.3

All electric banner

In this three-part series, Adveco has so far addressed the role of air source heat pumps and solar thermal as a source of low carbon preheat, in this final part, we consider the future of gas and the adaptation to all electric applications for implementing more sustainable hot water in commercial buildings.   Read Part 1 Sustainability & Hot Water – Which Path Is Right For Commercial Properties?  Read part 2 sustainability & Hot Water – Using The Sun Despite the pressure to address carbon emissions in building stock in the UK, the fact is we are still waiting for clear advice at a government policy level. The final decision on energy solutions remains unresolved. So do you opt to go all electric with equipment now on the basis that the grid will become zero carbon or hold out for the option of carbon-free gas such as Hydrogen, which in terms of infrastructure change and refurbishment would be potentially quicker, cheaper and less disruptive. As indicated, if your building has a gas connection and has high hot water demands it remains the most cost-effective option. Additionally, new gas-fired appliances operate with ever-reduced emissions, and most are ready to accept the initial proposed 20% hydrogen blends in the gas grid as early as 2024 without requiring any alteration. ‘Hydrogen Ready’ units are, with a replacement of the burner and pre-mixer, even capable of burning 100% hydrogen, but that scenario is some time away. Should hydrogen be accepted by the government as a function of net zero we would not expect 100% feeds to be in place nationally until 2040 with the grid changeover beginning in the early to mid-2030s. Retaining an existing gas connection, therefore, provides a degree of futureproofing should green gas technology be embraced. What is clear though is that the latest building regulations (Part L, 2021) have radically revised the carbon intensity of electricity from 519g CO/kWh ten years ago to just 136 today. Gas in the same period has fallen from 240 to 233. Whilst the regulations do not yet exclude gas, they do advantage the adoption of all electric systems. We have demonstrated that renewables have a critical role in reducing the carbon emissions of a system, as well as offsetting the costs of heating water with direct electricity. Gas-based hot water applications are, by a factor of 3.8, currently cheaper to operate than direct grid-electric systems. Using heat pumps can offset 25-35% of those energy costs, but this still leaves a considerable excess operating charge because of the need to provide top-up energy for safe operating temperatures. Historically, additional system top-up was provided by electric immersions, which for backup purposes and occasional peaks in demand whilst more expensive was acceptable. The shift to fully electric systems has put a greater onus on the technology which was never designed to provide primary heat. The costs are excessive and as we indicated, should they be deployed hard water, can rapidly develop scale leading to permanent damage in a remarkably short time. For this reason, we recommend the replacement of immersion technology with smaller electric boilers that are both more efficient, and, because they operate in a closed loop will avoid the issues of systems scaling up. Perhaps the most detrimental issue we see today as a result of replacing gas with electricity is the propensity to oversize the new all electric system, replacing gas appliances with electric alternatives with like-for-like capabilities. Hot water systems have been inherently oversized in the past through a lack of understanding of application design or concerns over providing suitable backup to ensure system continuity. The result of oversizing is however always the same, unnecessary capital costs for system supply and installation, but when replacing gas with electricity, oversizing leads to greater electrical demand and should that exceed a building’s available amperage of electrical supply, project installation costs will inevitably soar, or even stall the project. This can best be avoided by understanding your building’s actual hot water demands and designing the replacement to meet those specific needs. There is an art to designing hot water systems, but real, actionable data is priceless. When considering options for introducing sustainability the best advice we can give is to understand your needs first. Live metering is an easy, non-intrusive way of securing the valuable operational data you need to make informed decisions that deliver on expectations to lower carbon emissions without incurring unforeseen costs.  

Using The Sun – Sustainability & Water Heating part 2

Using the sun banner

In this three-part series Adveco considers the choices available to commercial organisations that wish to advance decarbonisation strategies in their buildings through the implementation of more sustainable hot water. In part 1 we considered the role of air source heat pumps as a source of low carbon preheat, now we turn our attention to using the sun with solar thermal systems… Read Part 1 Sustainability & Hot Water – Which Path Is Right For Commercial Properties?  Using the sun to generate free heat from solar energy is a well-recognised and proven route for introducing renewables into a building project. As a high-temperature renewable source of hot water, solar thermal lends itself to working in conjunction with not only conventional gas heating but also other renewable technologies including air source heat pumps which can be used to provide pre-heat to solar thermal. This enables a variety of hybrid applications to be considered to meet the varied demands of commercial buildings. Solar thermal systems are ideal for businesses that use and rely on large amounts of hot water, but it is important to understand that a solar thermal system will not fully replace your existing water heating system and will not provide space heating. All areas of the UK are suitable for using the sun through solar energy technology; however, solar insolation, the energy generated from sunlight within collectors, will decrease as the sun’s inclination falls in the winter months and this is affected by how northerly located a building is in the UK as well as cloud cover. When it comes to using the Sun, solar thermal systems are obviously most productive in the summer months, when there is most sunlight, resulting in the additional need for either non-renewable energy sources or heat pumps which will still generate usable year round, even if ambient outside temperatures drop to -20°C during the winter months. Shading from neighbouring buildings or tall trees, for example, can also greatly reduce a solar system’s output in which case a commercial air source heat pump would be a preferred alternative to produce low-carbon heat energy. The actual percentage of your water heating demand covered by solar thermal will depend on your site and energy consumption habits (though this figure is typically around 30% for commercial sites). A south-facing and unobstructed roof with an inclination of 30° from the horizontal is optimal, though by no means essential as solar collectors can be installed in a variety of ways: built on the roof; built in roof; mounted on walls or on a frame construction to achieve inclination on flat roofs. Sized and installed correctly, a single solar thermal collector can contribute up to 1400kWh per annum, providing electricity savings of £300 and more importantly reducing emissions of CO² by 322kg. It is important to recognise that solar thermal differs from solar photovoltaic or Solar PV as it is known. Solar PV uses solar cells in a panel to convert the solar energy into electricity that can be stored, used as required, and even be sold back to the grid. Solar thermal works by a process of fluid heating in the collector panels that is then transferred via indirect heating in the cylinder into the hot water system.  This requires basic plumbing for its installation and a minimum 3m drop to ensure flow. This does mean it is really only suited to installation on a building, rather than in the grounds, although that helps reduce the threat of vandalism compared to frames installed on ground level. Giving consideration only to the hot water system, solar thermal is still more advantageous compared to equivalent-sized solar PV systems. For example, a 4kW solar PV system and the equivalent solar thermal system will cost almost the same to purchase and install, with minimal operational costs, but solar thermal will exhibit a much smaller physical footprint. A typical 4 kW PV system would require 16 collectors at 25m², whereas this would be matched by just three solar thermal collectors for a total footprint of 6.6m². This makes solar thermal a better choice for buildings with reduced roof space, especially if sustainable projects are intending to introduce a mix of solar thermal, heat pump and solar PV. The silent operation of solar is also a consideration factor. To ensure system longevity and return on investment, fluid within the solar collectors must be correctly managed. If left in the panel it can overheat, stagnate and leave collectors irreparable. This can be avoided by incorporating Drain Back into solar system designs. This gravity flow approach reduces pump capacity requirements and energy use of the pump station to a minimum and will automatically drain fluid if power is cut without the need for working components. This makes solar thermal systems with drain back low maintenance with long operational lifespans. Fluid refresh is, on average, required every eight years but may last much longer. Certain commercial system designs can demand a minimum of 45°C of preheat which, due to annual variation in production, could preclude the use of solar thermal as a lone preheat source. This does match the minimum working flow temperature for preheat that would be designed into a system utilising the current generation of air source heat pump. Under such conditions, a typical sustainable application would see a cylinder sized to meet the storage requirements of the building’s hot water demands with the heat coming from a combination of an air source heat pump and solar thermal collectors working in conjunction to guarantee the preheat temperature. The heat pump, operating at optimal efficiency at lower temperatures will preheat the 5°C cold feed to 45°C at which point the solar thermal is employed to further raise temperature to 50 or 60°C depending on the time of year. Working together the renewables can offset the majority of the electrical costs otherwise required to heat the water, even during periods of peak demand. Using the sun to provide energy to preheat a hot water application or top-up preheat in … Read more

Sustainability & Water Heating

Sustainability water heating part 1 banner

In this three-part series on sustainability & water heating, Adveco considers the choices available to commercial organisations that wish to advance decarbonisation strategies in their buildings through the implementation of more sustainable hot water.   In this first part we consider some of the basic constraints of designing water heating applications, the technology available and the role of air source heat pumps… Which Path Is Right For Commercial Properties? Estimates vary, but it is generally accepted that buildings are responsible for as much as 50% of the nation’s carbon emissions, with much of the existing building stock still dependent on gas, which, while increasingly efficient to use is a ‘dirty’ fossil fuel. Daily hot water usage can potentially account for as much as 30% of a commercial building’s daily energy demands so is a notable component of an organisation’s emissions. So sustainability & water heating go hand in hand, and the latter should be one of the first considerations within a decarbonisation strategy. The relatively lower cost of gas compared to grid electricity, and the necessary high working flow temperatures it delivers have therefore made it historically the energy of choice. This becomes problematic if sustainable operations are now the goal. As a matter of course, new builds, unless exhibiting large demands for gas, will struggle to receive permission (under Part L of the building regulations) for a new gas connection and as a result, are going ‘all electric’ for heating and hot water. With modern construction fabric and insulation, this approach can pay dividends. For legacy properties requiring refurbishment, the choices become more problematic, especially for space heating where modern low-temperature systems need replacement pipework and heat emitters or will fail to deliver. Though this is not an issue for replacement hot water, the complexity of both new build and refurbishment can still suffer costly pitfalls in the drive to sustainability. With electricity on average currently costing as much as 3.8 times that of gas, serious consideration needs to be given to a selection of technologies available to ensure that any changes to a hot water system balance the carbon reduction with the capital and operational costs. The Options For Sustainable Water Heating There are several options when it comes to implementing a hot water system and as we have intimated some are driven by finance others by the desire to be environmentally aware. Other factors though can include everything from geology to available space. A building’s location will instantly direct certain decisions as the hardness or softness of the water will impact options. For instance, stainless steel cylinders will be preferential in soft water areas as they are resistant to the corrosive nature of the water, whilst lower-cost glass-lined vessels are preferable in harder water areas. However, high-intensity heating, such as delivered by electric immersion can be extremely detrimental in hard water regions, accelerating limescale generation to the point that it can irreparably damage a system in a matter of months if not correctly maintained. That does not preclude electricity as a choice, but it does affect how applications should be designed. The real leading question is do you choose gas or electricity? If gas, do you opt for direct or indirect heating systems or if electricity do you choose immersion or electric boiler as your source of thermal energy? Whichever route you decide upon, your system will additionally require a low-carbon heat source which will preheat the water reducing the energy consumption of the water heater, and in turn, reduce carbon emissions and the running costs of the water heater. There are several choices for securing low carbon heat, including biomass; combined heat and power (CHP); ground or water source heat pumps; air source heat pumps (ASHP), solar photovoltaics (PV) and solar thermal.  Through a mix of cost and simplicity, the best technologies to use for domestic hot water (DHW) systems are either ASHP or solar thermal. Heat pumps are a technology that operates most efficiently at lower temperatures, making it highly applicable to domestic applications, but commercial DHW systems require 60°C working flow for safe operation and anti-legionella processes. The heat pump can be pushed to deliver a higher percentage contribution, generating temperatures of 45-50°C for preheat, but this at the cost of performance efficiency, requires electrical energy, and that has operating cost implications. Compared to an equivalent-sized direct-electric (ie, from the grid) system, one with an ASHP can achieve carbon reductions of 42-47%, whilst saving 25-35% of the energy costs. The system will still be required to top up heat to the necessary 60°C, using either immersion or an electric boiler. This, combined with the heat pump’s reduced operational efficiency means it will still be much more expensive to run than an equivalent-sized gas-fired system based on a modern and efficient (109% net) water heater. The recommendation, in this case, is to keep electrical demand down by increasing the size of the hot water storage which is then heated more slowly. This is very different to the high energy input, low storage seen with gas-fired systems. A 30kW energy source can heat 750 litres/hour by 34°C, so when the system draws hot water at a faster rate than it can be heated to 44°C for hot showers you start to get complaints that the water is ‘cold’. The larger volume cylinder helps to overcome this undersizing allowing for a two-hour reheat cycle that maintains enough water at 60°C to meet daily demand, whilst slowly heating reserves through the night when demand is minimal to meet the morning peak. Despite gaining improved sustainability & water heating modernisation the carbon savings and costs no longer align. Even with an ASHP operating at optimum efficiency (for 35% recorded reduction in energy) costs would be close to three times that of gas alone, so it is inherently important to consider the nominal value of the carbon reduction when planning a refurbishment from gas to electricity. However, we can still take advantage of solar thermal which can be employed … Read more

Noise Pollution – What You Need To Hear

noise pollution

Noise pollution is a serious problem that can cause a variety of health problems and also be damaging to the wider environment. As such, its prevention will be a consideration for any design & build project in the commercial sector. Noise management is a complex issue and at times requires complex solutions. Unlike air quality, there are currently no European or national noise limits which have to be met, although there can be specific local limits for specific developments. Furthermore, sound only becomes noise when it exists in the wrong place or at the wrong time such that it causes or contributes to some harmful or otherwise unwanted effect. Unlike many other pollutants, noise pollution depends not just on the physical aspects of the sound itself, but also on the human reaction to it. Consequently, there is a range of legislation that addresses everything from clearly identifying sound levels of products to those regulating construction quality and setting acceptable noise sound levels within the working environment. There are many causes of noise pollution. Traffic & construction noise is the most recognised sources of loud noise, but commercial machinery & equipment also contribute and are more likely to be a consistent generator of sound that over time becomes identified as a noise pollutant. Noise pollution can have a number of negative effects on human health. It can cause hearing loss due to exposure to loud noise over a long period of time, but stress, anxiety and irritability, often associated with sleep disturbances is more common as will be a typical issue raised against commercial operations, especially if located close to residential land use. The disruption of local ecosystems and the impact on wildlife due to loud noise can also become an issue for a business. The provision of hot water to commercial buildings is very often a business-critical function of daily operations and this can well be 365 days a year, so its important to give consideration to sound levels generated by the domestic hot water (DHW) plant. Fortunately, a typical gas-fired commercial water heater emits a conversational 55-65 decibels. This is further reduced with electric units, such as Adveco’s ARDENT electric boilers that produce just 35-58 decibels – quieter than an average conversation. To put that into perspective a domestic fridge will average at about 45 decibels, typical road traffic, heard from inside a car will rate at around 85 decibels. Located within the plant room, this level of noise should prove to be of little concern. Many plant rooms will be located in basements or on separate floors, where noise is naturally muffled, or can be more acoustically controlled. The growing popularity of offsite constructed plant rooms, does mean these appliances are increasingly being located to maximise space in car parks, unused alleys and especially rooftops. This reduces the potential for noise pollution for the building’s users but could become an issue with neighbours as the GRP structures offer less capability to reduce sound. For boilers and water heaters, the noise as indicated is minimal and should not be an issue, but external baffles can be erected to deflect noise from any neighbouring structures. Sound carries further when unimpeded, so the external location of commercial equipment is where there are likely to be issues, if any. With the drive to attain greater sustainability of systems, reducing carbon and offsetting more expensive electric energy costs, new DHW systems will take advantage of technology such as air source heat pumps (ASHP) or solar thermal to provide system pre-heat. Unlike gas and electric water heaters, this green technology must be located outside to operate. There is a major push for the UK to adopt ASHPs as a way to generate low-carbon heating, but concerns over noise remain one of the key stumbling blocks to their wider adoption, especially when applied to residential applications, whether domestic or across the leisure and hotel sectors. Heat pumps will generate noise, due to the pump and fan rotation, and this can be a particular concern during night-time operation. At Adveco, we strive to research and manage our products to meet and exceed the criteria set by our customers, and much attention has been paid to the acoustics of our ASHP ranges. For example, at 52 dB(A), the Adveco FPi32 heat pumps are extremely quiet during normal daily operation, but also feature ‘quiet time operation’ to reduce noise pollution at night. This helps to address concerns, reducing outdoor noise pollution and improving the comfort of the working environment.   Better still is Adveco’s near-silent solar thermal with drain back. An excellent way to achieve as much as 30% of the annual energy demands to run commercial DHW applications, solar thermal collectors required placement on the rooftop or external walls of a business. Because solar thermal drain back uses gravity flow for a large proportion of its operation, the system’s only mechanical aid is a small, near-silent pump. This makes solar thermal an excellent option for introducing cost-effective, sustainable water heating to a building without any concerns of generating noise pollution or having a project stall due to enforcement of noise regulations for external systems. With the ever-increasing need for commercial companies to be more environmentally friendly, reduction of carbon and NOₓ emissions from the hot water application are going to top the agenda when it comes to new build or refurbishment, but addressing noise pollution should also be a consideration.

Solar Thermal Applications for Decarbonised Hot Water

Sustainable hot water for commercial buildings using solar thermal

As a leader in the design and supply of solar thermal applications for the commercial built environment, Adveco looks at why the technology remains one of the best ways to decarbonise hot water without driving up operational costs. Solar thermal applications deploy panels with fluid that captures and efficiently transfers solar energy as heat indirectly to the domestic hot water (DHW) system. As a high-temperature renewable source of DHW, Adveco solar thermal lends itself to working in conjunction with not only conventional gas heating but also other renewable technologies including Adveco’s air source heat pumps which can be used to provide pre-heat to solar thermal. This enables a variety of bespoke, hybrid applications to be considered to meet the varied demands of commercial buildings. Whether a commercial hot water system uses gas or electricity, it will require a preheat source to reduce carbon emissions. As a rule of thumb, new builds will invariably default to heat pumps. In contrast, properties with an existing gas connection will see greater advantages from the installation of solar thermal which can be extremely effective in reducing reliance on the gas boiler. Even so, offsetting costs in direct electric systems through use of solar thermal applications remains extremely advantageous. Neither heat pumps nor solar thermal technology currently offers a standalone response for the year-round high temperatures, high volume and peak demands seen in commercial systems. Solar thermal can be combined with a heat pump (which is used to supply initial preheat) to top up heat to a minimum of 60°C required for commercial applications without using direct electric immersions. A more compact alternative to solar PV for DHW, solar thermal is extremely advantageous where roof space is at a premium due to competition with other heating and ventilation systems on a project. This is especially true of urban projects where solar thermal’s silent operation is also desirable. Whichever approach is chosen, making an accurate assessment of the needs and limitations of a building first is critical for the correct sizing of the solar thermal system. Solar Thermal Applications For Carbon Reduction & Significant savings on Running Costs A commercial system sized to support an occupancy of 50 will typically require 12-24 Rugged 2.24 m² flat plate collectors, whilst smaller systems servicing up to 12 occupants will employ just three to four panels. Sized and installed correctly, each Adveco solar thermal collector can contribute up to 1400kWh per annum, providing electricity savings of £300 and more importantly reducing emissions of CO² by 322kg. To ensure system longevity and return on investment, fluid within the solar collectors must be correctly managed. If left in the panel it can overheat, stagnate and leave collectors irreparable. Adveco solar thermal systems avoid this by incorporating drain back into all its solar system designs. This gravity flow approach reduces pump capacity requirements and energy use of the pump station to a minimum and will automatically drain fluid if power is cut without the need for working components. This makes solar thermal systems with drainback low maintenance with long operational lifespans. Fluid refresh is, on average, required every eight years but may last much longer. With more than 800 systems deployed across the UK, Adveco’s solar thermal applications are an effective renewable which today offers clear cost savings for more rapid return on investment and a proven path to incorporating sustainability into the annual operation of commercial properties. Discover more at commercial solar thermal hot water systems.

Gas & Sustainable Buildings

The UK commercial sector is still very much in the early process of adapting to more sustainable working, with many still reliant on fossil fuels. Despite the calls to change to more renewable forms of energy many are continuing to refit with familiar gas technology, so what is the current state of play between gas and sustainable buildings? Decarbonising UK commercial properties is an immense challenge. They are directly responsible for nearly one-fifth of the UK’s carbon emissions and, since domestic hot water (DHW) can account for as much as a third of a business’s routine energy demands, addressing emissions from hot water generation should be on an organisation sustainability agenda. In response there are two broad UK-wide strategies: either installation of heat pumps to drive electrification, or, for properties on the existing gas network, switch over to hydrogen as a low-carbon alternative to natural gas. In 2020 according to the Department for Business, Energy, & Industry Strategy (BEIS) more than 1,656,000 non-domestic buildings in England and Wales, the large majority of which were connected to the gas grid, were consuming more than 172 TWh of gas. The number of commercial properties is set to continue to grow, and though these new builds are opting for electric-only applications, existing buildings face a number of issues, not least the capital expenditure required to modernise services and the increased operational costs from implementation. For this reason, unlocking the potential of hydrogen represents a familiar, easier and more cost-effective way to transition to more sustainable heating practices in buildings. The International Renewable Energy Agency (IRENA), recently estimated Hydrogen will cover up to 12% of global energy demand by 2050 from virtually nothing today. At least two-thirds of total production will be green hydrogen (produced with renewable electricity) with the remainder covered by blue hydrogen production (derived from natural gas) so long as the carbon capture and storage (CCS) is proved viable. In the UK, the status of hydrogen remains to be confirmed as part of the government’s push towards attaining net zero by 2050. The Heating and Buildings Strategy published in late 2021 does, however, give an indication of the growing support for hydrogen-based technologies, as does continued government investment in its feasibility. Hydrogen, as a result, is increasingly seen as a core shift in the energy trade and critically, in the wake of demands to reduce dependency on Russian oil and gas, the future for regionalisation of energy supply. Currently, when comparing average non-domestic gas to electricity tariffs, electricity will cost as much as four and a half times that of gas, making gas the more cost-effective option. Yet it fails to deliver a clear investment in sustainability unless hydrogen is used to decarbonise. That also comes with a number of advantages given the equipment remains familiar to operate and manage. It should ensure capital costs remain lower, while decarbonisation can be accelerated within a property. For those wishing to adopt the hydrogen approach, there remains a question mark over how quickly, where and in what proportion hydrogen will be introduced into the gas grid. With the ultimate aim of introducing 100% green hydrogen via the existing gas network, gas water heaters and boilers will need to be factory configured to burn hydrogen only. Or be hydrogen-ready, whereby natural gas-compliant appliances can be converted to operate on hydrogen only in the future. These appliances, with the exception of some regional test deployments of hydrogen, are not expected to be actively used with 100% hydrogen until well into the 2030s at the earliest, with a potential national roll-out predicted for the 2040s. As an interim, the UK is assessing the potential for introducing hydrogen into the existing gas network as a blend at 20% volume to deliver a safer, greener gas alternative that reduces carbon emissions. A blended gas grid has the potential to become a reality by the late 2020s, enabling organisations to become used to working with hydrogen as an energy source with less disruption and no noticeable change in how gas is used within the property. Can gas & sustainable buildings still co-exist? For commercial organisations which have recently invested in, or plan to refurbish, existing non-hydrogen-ready gas appliances, the most recent condensing gas-fired models currently on the market should already be able to burn natural gas with a blend of up to 20% hydrogen without requiring any modification. For example, Adveco’s current ranges of high efficiency, ultra-low emission gas-fired condensing water heater, the instantaneous ADplus and semi-instantaneous AD, as well as the MD boiler range, are all hydrogen 20% blend ready. Such appliances give customers peace of mind when investing in gas-fired water heating applications. With the latest generation of gas water heaters and boilers offering more rugged construction and technology that better manages operation the working life of the appliance is further extended, meaning if purchased today they should continue to operate well into the 2030s. As hydrogen blending becomes commonplace, this then delivers on the desire to decarbonise operations in the easiest and most cost-effective manner as a business user. When these require replacement a wider choice of more advanced, proven and lower-cost hydrogen-ready and 100% hydrogen appliances for commercial applications will be available on the market as the gas network matures and greens. Gas-fired commercial water heating, therefore, remains a proven and future-proof choice for the working lifespan of current-generation appliances. Not only practical and lower cost to operate, these also deliver a way to introduce a degree of sustainability in the interim before hydrogen can make a real impact so gas and sustainable buildings will develop hand in hand. With modern building regulations, it is likely that a commercial hot water system, whether it uses gas or electricity, will still also require a low-carbon preheat source to reduce carbon emissions. For properties with an existing gas connection employing solar thermal can be extremely effective in reducing reliance on the existing gas boiler, cutting as much as 30% of the annual energy demands for water … Read more