It may seem counter-intuitive to be talking about the need for hot water as the country is potentially about to experience the hottest day on record, but there is absolute sense when we accept that the current weather extreme is a sign of future climate developments and why it is critical UK organisation begin planning responses now.
On Monday, temperatures in Suffolk peaked at 38.1C, just shy of the record 38.7C set in 2019. The UK has seen high temperatures in the past, the famed summer of ’76 actually peak at 35.6C but it lasted throughout July and August of that year. The current heatwave is set to break in a matter of a week, so is this really that big an issue? In short, the answer is yes according to the majority of climate scientists who see these weather extremes as a sign of climate change, which means in the coming years we will experience more extreme climate events and they will occur more often.
According to the Met Office, the conditions causing the current extreme heat are ten time more likely as a result of the average world temperatures rising just over 1C beyond levels seen prior to industrialisation. That means we are now experiencing – according to the UN’s climate science body, the Intergovernmental Panel on Climate Change (IPCC) – the hottest period for 125,000 years. This is why the UN set a limit on global temperature increases to 1.5C higher than pre-industrial levels in order to avoid the most dangerous impacts of future climate change.
The cause of this accelerated warming are greenhouse gas emissions resulting from the burning of coal, oil and gas. Pushing trapped carbon dioxide concentrations to the highest levels in more than two million years, heat becomes trapped in the atmosphere leading to the temperature extremes we are seeing today.
Last year’s UN conference on climate, COP26, painted a stark picture for future climate. If global policy on climate change were to be implemented as promised then the expectation was for a temperature rise of 2.4C from pre-industrial levels by the end of the century, meaning current temperatures would be mild in comparison. This is why the ambitious target of reducing emissions to prevent global temperatures exceeding 1.5C was agreed upon. To achieve this, emissions need to have reached a peak by as late as 2025, before being effectively halved by 2030 leading to further scaling back to achieve net zero emissions by 2050.
To put that into perspective, according to the IPCC, there needs to be a minimum reduction in emissions of 43% by the end of the decade, yet as the world came out of the pandemic energy emissions grew last year, by more than 4% in the UK and more than 6% globally to the tune of some 36.3 billion tonnes of CO².
What is clear, according to the Climate Change Committee (CCC), is that the UK’s progress towards net zero is woefully inadequate. Government strategies for the public sector, which is expected to lead by example, are still focused on information gathering with the intent to drive the adoption of new low-carbon technologies from 2025, which feels too little too late. Particularly when you start to factor in the capital costs of instigating a wholesale shift in the way buildings are heated and hot water supplied to meet core business needs.
The commercial built sector is especially complex, and the scale of the challenge is daunting both in terms of new build and refurbishing existing building stock not necessarily designed to work with new low carbon technology. There are more than 1.6 million pre-existing non-domestic buildings in England and Wales, generating almost one-fifth of the UK’s carbon emissions, needing expert, practical support. By 2050, there is also a predicted 35% rise in demand for non-domestic floor space.
Initially, the hope is that proven technology, especially heat pumps, can make a major improvement to the sector, helping to decrease emissions. Space heating is problematic for older buildings where the very fabric of the building will influence the efficient operation of the technology, meaning extensive refurbishment is required. For hot water systems (DHW) this is not the case, and heat pumps and all-electric applications hold huge potential for reducing emissions by as much as 70%. Savings can also be achieved through the application of solar thermal, which can work in conjunction with heat pumps, but also critically existing gas-fired systems to deliver emission reductions right now.
July’s extreme weather should be seen as both a warning of future climate change and a rallying cry to the entire commercial sector to look at what you can do better with what you have now and what you want to build in the coming decades. Adveco has the expertise to help you answer those questions and begin delivering better DHW applications now because there is very little doubt that in the near future the government will need to introduce more aggressive policy that will mandate change. Better then to control the timeframe and plan your transition toward net zero in a way that is most meaningful to your business from the perspectives of cost to corporate social responsibility.